在直角梯形ABCD中,∠C=90o,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运
在直角梯形ABCD中,∠C=90o,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都...
在直角梯形ABCD中,∠C=90o,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是lcm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横,纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图 展开
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图 展开
4个回答
展开全部
(1)设动点除法t秒后,BC=BA=t,
则S△BPQ=1/2 * t *6=30,∴t=10(秒)
则BA=10cm,AD=2cm
(2)可得坐标M(10,30),N(12,30)
(3)当点P在BA上时,y=1/2 * t * sinB =3t²/10 (0≤t<10)
当点P在DC上时,y=1/2 * 10 * (18-t)=-5t+90 (12<t≤18)
则S△BPQ=1/2 * t *6=30,∴t=10(秒)
则BA=10cm,AD=2cm
(2)可得坐标M(10,30),N(12,30)
(3)当点P在BA上时,y=1/2 * t * sinB =3t²/10 (0≤t<10)
当点P在DC上时,y=1/2 * 10 * (18-t)=-5t+90 (12<t≤18)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)设动点除法t秒后,点P到达点A且点Q正好到达点C时,BC=BA=t,
则S△BPQ=1/2 * t *6=30,∴t=10(秒)
则BA=10cm,AD=2cm
(2)可得坐标为M(10,30),N(12,30)
(3)当点P在BA上时,y=1/2 * t * sinB =3t²/10 (0≤t<10)
当点P在DC上时,y=1/2 * 10 * (18-t)=-5t+90 (12<t≤18)
则S△BPQ=1/2 * t *6=30,∴t=10(秒)
则BA=10cm,AD=2cm
(2)可得坐标为M(10,30),N(12,30)
(3)当点P在BA上时,y=1/2 * t * sinB =3t²/10 (0≤t<10)
当点P在DC上时,y=1/2 * 10 * (18-t)=-5t+90 (12<t≤18)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询