3个回答
展开全部
解:∵xy=e^(x-y) ==>d(xy)=d(e^(x-y))
==>xdy+ydx=e^(x+y)d(x+y)
==>xdy+ydx=e^(x+y)(dx+dy)
==>xdy-e^(x+y)dy=e^(x+y)dx-ydx
==>[x-e^(x+y)]dy=[e^(x+y)-y]dx
∴dy=[e^(x+y)-y]/[x-e^(x+y)]dx
==>xdy+ydx=e^(x+y)d(x+y)
==>xdy+ydx=e^(x+y)(dx+dy)
==>xdy-e^(x+y)dy=e^(x+y)dx-ydx
==>[x-e^(x+y)]dy=[e^(x+y)-y]dx
∴dy=[e^(x+y)-y]/[x-e^(x+y)]dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
xdy+ydx=e^(x-y)dx-e^(x-y)dy
[x+e^(x-y)]dy=e^(x-y)dx-ydx
dy=e^(x-y)-y\x+e^(x-y)
隐函数求导就是把XY都求导,对x的导数后面写dx 相对应对y的导数后乘dy最后整理就行
[x+e^(x-y)]dy=e^(x-y)dx-ydx
dy=e^(x-y)-y\x+e^(x-y)
隐函数求导就是把XY都求导,对x的导数后面写dx 相对应对y的导数后乘dy最后整理就行
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询