为什么两两相交且不共点的三条直线确定一个平面,怎么证明

不懂... 不懂 展开
云鹤游龙
2011-01-19 · TA获得超过429个赞
知道小有建树答主
回答量:164
采纳率:0%
帮助的人:181万
展开全部
设三条直线为m,n,k,mn交于A,mk交于B,nk交于C,
首先相交直线mn构成一平面P,只需证明k也在P上即可,由于B在m上,C在n上,且m和n均在P上,因此B和C也在P上,又B和C均在直线k上,直线k上的两点B和C均在平面P上,因此k也在P上,否则直线和平面最多只有一个交点。由于m,n,k都在平面P上,且P已经由m与n惟一确定,因此m,n,k确定一个平面P。
569783409
2011-01-19
知道答主
回答量:47
采纳率:0%
帮助的人:25.7万
展开全部
同一法证明
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式