初二数学超难一次函数,题。要求只用初二上学过的知识解答!!!
已知一次函数y=mx+4具有性质:Y随X的增大而减小,与直线X=1,X=4分别相较于A(A在第一象限),D,直线X=1,X=4与X轴交于B,C点,问:要使四变形ABCD为...
已知一次函数y=mx+4具有性质:Y随X的增大而减小,与直线X=1,X=4分别相较于A(A在第一象限),D,直线X=1,X=4与X轴交于B,C点,
问:要使四变形ABCD为凸四边形,求m的取值范围。
2:已知四边形ABCD是凸四边形,直线y=mx+4与x轴相较于点E,且EA分之ED等于7分之4时,求一次函数的解析式。
注:必用初二上的知识解答,答对有追加。急急急,高手来帮个忙! 展开
问:要使四变形ABCD为凸四边形,求m的取值范围。
2:已知四边形ABCD是凸四边形,直线y=mx+4与x轴相较于点E,且EA分之ED等于7分之4时,求一次函数的解析式。
注:必用初二上的知识解答,答对有追加。急急急,高手来帮个忙! 展开
4个回答
展开全部
1因为一次函数y=mx+4中
令X=0,Y=4
所以此一次函数图像与Y轴交点坐标为(0,4)
直线X=1与X轴交于B点(1,0)
X=4与X轴交于C(4,0)
四边形ABCD为凸四边形
如图,函数图像应在两条直线之间(临界关系式中的m分别求一下)
所以-1<m<0.
2. 直线y=4m+4与X轴相交于E点,即,mx+4=0 (y=0), x=-4/m,则E点的坐标为(-4/m,0)
因,ED/EA=4/7, 故EC/EB=4/7. (相似三角形的对应边成比例)
(EB-EC)/EB=(7-4)/7=3/7.
[ (-4/m-1-(-4/m-4)]/(-4/m-1)=3/7.
3*7=3(-4/m-1).
-4/m-1=7.
-4/m=6,
m=-3/2.
∴y=(-3/2)x+4.
3x+2y-8=0 ----即为所求的一次函数的解析式。
展开全部
解:∵y=mx+4 随x增大而减小,∴m<0,
又,∵y与x=1,x=4 两条直线分别相交于A、D两点,得交点A(1,m+4),D(4,4m+4).
且,A在第一象限,∴m+4>0, m>-4.
又因要求四边形为凸四边形,故D点也应在第一象限,即4m+4>0, m>-1.
综上分析,得: -1<m<0.
2. 直线y=4m+4与X轴相交于E点,即,mx+4=0 (y=0), x=-4/m,则E点的坐标为(-4/m,0)
因,ED/EA=4/7, 故EC/EB=4/7. (相似三角形的对应边成比例)
(EB-EC)/EB=(7-4)/7=3/7.
[ (-4/m-1-(-4/m-4)]/(-4/m-1)=3/7.
3*7=3(-4/m-1).
-4/m-1=7.
-4/m=6,
m=-3/2.
∴y=(-3/2)x+4.
3x+2y-8=0 ----即为所求的一次函数的解析式。
又,∵y与x=1,x=4 两条直线分别相交于A、D两点,得交点A(1,m+4),D(4,4m+4).
且,A在第一象限,∴m+4>0, m>-4.
又因要求四边形为凸四边形,故D点也应在第一象限,即4m+4>0, m>-1.
综上分析,得: -1<m<0.
2. 直线y=4m+4与X轴相交于E点,即,mx+4=0 (y=0), x=-4/m,则E点的坐标为(-4/m,0)
因,ED/EA=4/7, 故EC/EB=4/7. (相似三角形的对应边成比例)
(EB-EC)/EB=(7-4)/7=3/7.
[ (-4/m-1-(-4/m-4)]/(-4/m-1)=3/7.
3*7=3(-4/m-1).
-4/m-1=7.
-4/m=6,
m=-3/2.
∴y=(-3/2)x+4.
3x+2y-8=0 ----即为所求的一次函数的解析式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵y=mx+4 随x增大而减小,∴m<0,
又,∵y与x=1,x=4 两条直线分别相交于A、D两点,得交点A(1,m+4),D(4,4m+4).
且,A在第一象限,∴m+4>0, m>-4.
又因要求四边形为凸四边形,故D点也应在第一象限,即4m+4>0, m>-1.
综上分析,得: -1<m<0.
2. 直线y=4m+4与X轴相交于E点,即,mx+4=0 (y=0), x=-4/m,则E点的坐标为(-4/m,0)
因,ED/EA=4/7, 故EC/EB=4/7. (相似三角形的对应边成比例)
(EB-EC)/EB=(7-4)/7=3/7.
[ (-4/m-1-(-4/m-4)]/(-4/m-1)=3/7.
3*7=3(-4/m-1).
-4/m-1=7.
-4/m=6,
m=-3/2.
∴y=(-3/2)x+4.
3x+2y-8=0
又,∵y与x=1,x=4 两条直线分别相交于A、D两点,得交点A(1,m+4),D(4,4m+4).
且,A在第一象限,∴m+4>0, m>-4.
又因要求四边形为凸四边形,故D点也应在第一象限,即4m+4>0, m>-1.
综上分析,得: -1<m<0.
2. 直线y=4m+4与X轴相交于E点,即,mx+4=0 (y=0), x=-4/m,则E点的坐标为(-4/m,0)
因,ED/EA=4/7, 故EC/EB=4/7. (相似三角形的对应边成比例)
(EB-EC)/EB=(7-4)/7=3/7.
[ (-4/m-1-(-4/m-4)]/(-4/m-1)=3/7.
3*7=3(-4/m-1).
-4/m-1=7.
-4/m=6,
m=-3/2.
∴y=(-3/2)x+4.
3x+2y-8=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.因为Y随X的增大而减小
所以m<0
再作图可知0>m>-1
2:因为三角形ABE相似于DCE所以ED比EA=EC比EB=4/7,
又因为EB=EC+3
所比4/7=EC/(EC+3)解得EC=4
所以E(8,O)
所以m=-1/2
所以m<0
再作图可知0>m>-1
2:因为三角形ABE相似于DCE所以ED比EA=EC比EB=4/7,
又因为EB=EC+3
所比4/7=EC/(EC+3)解得EC=4
所以E(8,O)
所以m=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询