高中数学题目`在线求解
20:已知:三角形ABC为直角三角形,角C为直角,A(0,-8),顶点C在x轴上运动,M在y轴上,向量AM=1/2(向量AB+向量AC),设B的运动轨迹为曲线E.1)求B...
20:已知:三角形ABC为直角三角形,角C为直角,A(0,-8),顶点C在x轴上运动,M在y轴上,向量AM=1/2(向量AB+向量AC),设B的运动轨迹为曲线E.
1)求B的运动轨迹曲线E的方程
2)过点P(2,4)的直线l与曲线E相交于不同的两点Q、N,且满足向量QP=向量PN,求直线l的方程。 展开
1)求B的运动轨迹曲线E的方程
2)过点P(2,4)的直线l与曲线E相交于不同的两点Q、N,且满足向量QP=向量PN,求直线l的方程。 展开
展开全部
(1)
A(0,-8) , C(c,0), M(0,m), ∠C=90°, B(x,y)
AM = (1/2)(AB+AC)
OM-OA =(1/2)(OB-OA +OC -OA)
(0,m+8) = (1/2)( (x,y) + (c, 16))
= (1/2)(x+c,y+16)
=> (1/2)(x+c)=0
c = -x
∠C=90°
=> AC.CB =0
(c,8).(x-c,y) =0
c(x-c) - 8y = 0
-x(2x) -8y =0
x^2 + 4y =0
E的方程: x^2 + 4y =0 (1)
(2)
let Q(x1,y1),N(x2,y2)
QP=PN
OP-OQ = ON-OP
(2-x1,4-y1)= (x2-2,y2-4)
=> 2-x1= x2-2 and 4-y1 = y2-4
=> x1+x2 = 4 and y1+y2 = 8
l: y= mx + c
过点P(2,4)
=> 4 = 2m +c
c = 4-2m
l: y = mx+ 4-2m (2)
sub (2) into (1)
x^2 + 4y =0
x^2 + 4(mx+ 4-2m) =0
x^2 + 4mx + 16-8m =0
x1+x2 = -4m = 4
=> m = -1
l: y = mx+ 4-2m
y = -x + 6
A(0,-8) , C(c,0), M(0,m), ∠C=90°, B(x,y)
AM = (1/2)(AB+AC)
OM-OA =(1/2)(OB-OA +OC -OA)
(0,m+8) = (1/2)( (x,y) + (c, 16))
= (1/2)(x+c,y+16)
=> (1/2)(x+c)=0
c = -x
∠C=90°
=> AC.CB =0
(c,8).(x-c,y) =0
c(x-c) - 8y = 0
-x(2x) -8y =0
x^2 + 4y =0
E的方程: x^2 + 4y =0 (1)
(2)
let Q(x1,y1),N(x2,y2)
QP=PN
OP-OQ = ON-OP
(2-x1,4-y1)= (x2-2,y2-4)
=> 2-x1= x2-2 and 4-y1 = y2-4
=> x1+x2 = 4 and y1+y2 = 8
l: y= mx + c
过点P(2,4)
=> 4 = 2m +c
c = 4-2m
l: y = mx+ 4-2m (2)
sub (2) into (1)
x^2 + 4y =0
x^2 + 4(mx+ 4-2m) =0
x^2 + 4mx + 16-8m =0
x1+x2 = -4m = 4
=> m = -1
l: y = mx+ 4-2m
y = -x + 6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询