已知向量a=(cosa,sina),向量b=(cosb,sinb),Ia-bI的模=(2根号5)/5,(1)cos(a-b)的值为?
1个回答
展开全部
a-b=(cosa-cosb, sina-sinb)
|a-b|^2=(cosa-cosb)^2+(sina-sinb)^2=2-2(cosacosb+sinasinb)=4/5
cosacosb+sinasinb=3/5
cos(a-b)=cosacosb+sinasinb=3/5
-π/2<b<0<α<π/2,
0<a-b<π
sin(a-b)=√(1-[sin(a-b)]^2)=4/5
sinb=-5/13,
cosb=√[1-(sinb)^2]=12/13
sina=sin[(a-b)+b]=sin(a-b)cosb+cos(a-b)sinb=33/65
|a-b|^2=(cosa-cosb)^2+(sina-sinb)^2=2-2(cosacosb+sinasinb)=4/5
cosacosb+sinasinb=3/5
cos(a-b)=cosacosb+sinasinb=3/5
-π/2<b<0<α<π/2,
0<a-b<π
sin(a-b)=√(1-[sin(a-b)]^2)=4/5
sinb=-5/13,
cosb=√[1-(sinb)^2]=12/13
sina=sin[(a-b)+b]=sin(a-b)cosb+cos(a-b)sinb=33/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询