4个回答
展开全部
1.当n=1时 168/168=1 余数为0 命题正确
2.假设当n=k时 有:[13^(2k)-1] Mod 168=0 成立
那么 当n=k+1时 有:{13^(2k+2)-1] Mod 168
=13^(2k)*13^2-1 mod168
={13^(2k)-1}*13^2+13^2-1 mod 168
结合1和假设 显然 当n=k+1 命题也成立
综上所述 ~~~~~~~~~~~~~~~~~~~所以得证 不明白的话 请找我QQ342432926
2.假设当n=k时 有:[13^(2k)-1] Mod 168=0 成立
那么 当n=k+1时 有:{13^(2k+2)-1] Mod 168
=13^(2k)*13^2-1 mod168
={13^(2k)-1}*13^2+13^2-1 mod 168
结合1和假设 显然 当n=k+1 命题也成立
综上所述 ~~~~~~~~~~~~~~~~~~~所以得证 不明白的话 请找我QQ342432926
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学归纳法证明步骤
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-20
展开全部
13^(2(n+1))-1=169*13^(2n)-1=1*13^(2n)-1=13^(2n)-1 (Mod 168)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询