如图,在底面为直角梯形的四棱锥P-ABCD中,AD//BC,,∠ABC=90°PD⊥面ABCD,AD=1,AB=根号3,BC=4,求证:BD⊥
1个回答
展开全部
过点D作DE⊥BC交BC于点E,连接PE,则AB‖DE,
①依题意可得DE=AB=√3,BE=AD=1,所以CE=BC-BE=3,
所以BD=2,CD=2√3,
则可得BD+CD=BC,
所以BD⊥CD,
因为PA⊥面ABCD,
所以PA⊥BD,
所以BD⊥面PCD,
则BD⊥PC;
②令直线DE与平面PDC所成角为a,点E到平面PDC的距离为h,则
三棱锥P-CDE的面积为S=1/3*1/2*DE*CE*PD=1/3*1/2*CD*PD*h,
所以h=3/2,
sin a=h/DE=√3/2,
所以角a=60°,a为所求。
①依题意可得DE=AB=√3,BE=AD=1,所以CE=BC-BE=3,
所以BD=2,CD=2√3,
则可得BD+CD=BC,
所以BD⊥CD,
因为PA⊥面ABCD,
所以PA⊥BD,
所以BD⊥面PCD,
则BD⊥PC;
②令直线DE与平面PDC所成角为a,点E到平面PDC的距离为h,则
三棱锥P-CDE的面积为S=1/3*1/2*DE*CE*PD=1/3*1/2*CD*PD*h,
所以h=3/2,
sin a=h/DE=√3/2,
所以角a=60°,a为所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询