哥德巴赫猜想是什么?

纯爷们三月风1
2011-01-22
知道答主
回答量:12
采纳率:0%
帮助的人:12万
展开全部
哥德巴赫猜想
百科名片
哥德巴赫猜想哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。

目录

哥德巴赫猜想概况哥德巴赫介绍
哥德巴赫猜想的由来
历史上的证明
进展
中国数学家的贡献
哥德巴赫猜想的意义
有关对陈氏定理的所谓“质疑”所谓“质疑”
声明
辨析
现状论证求解公式条件
未获本质进展
呼唤全新思路
“民间数学家”距明珠有多远
希望催生新的理论
王元漫谈哥德巴赫猜想数论学家王元
什么是哥德巴赫猜想
为何如此重要
不要轻易尝试证明
著名报告文学哥德巴赫猜想概况 哥德巴赫介绍
哥德巴赫猜想的由来
历史上的证明
进展
中国数学家的贡献
哥德巴赫猜想的意义
有关对陈氏定理的所谓“质疑” 所谓“质疑”
声明
辨析
现状 论证求解公式条件
未获本质进展
呼唤全新思路
“民间数学家”距明珠有多远
希望催生新的理论
王元漫谈哥德巴赫猜想 数论学家王元
什么是哥德巴赫猜想
为何如此重要
不要轻易尝试证明
著名报告文学
展开 编辑本段哥德巴赫猜想概况
哥德巴赫介绍
哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家; 哥德巴赫人物
出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职。
哥德巴赫猜想的由来
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"欧拉回信说:“这个命题看来是正确的”。但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。 但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。 现在通常把这两个命题统称为哥德巴赫猜想。
历史上的证明
从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(1)都成立。但严格的数学证明尚待数学家的努力。 哥德巴赫的几个猜想
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。也没有任何实质性进展。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:任何大于特定大偶数N的偶数都可以表示为两个殆素数之和的形式,且这两个殆素数只拥有最多9个素因子。(所谓“殆素数”就是素数因子(包括相同的与不同的)的个数不超过某一固定常数的奇整数。例如,15=3×5有2个素因子,27=3×3×3有3个素因子。)此结论被记为“9+9”。这种缩小包围圈的办法很管用,科学家们于是从“9十9”开始,逐步减少每个殆素数里所含素因子的个数,直到使每个殆素数都是奇素数为止。值得注意的是,考虑到条件“大于特定大偶数N”,利用这种方法得出的结论本质上有别于哥德巴赫猜想。
编辑本段进展
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者最多仅仅是两个质数的乘积。”通常都简称这个结果为 (1 + 2)。 在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布爵证明了“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。 1932年,英国的埃斯特曼证明了“6 + 6”。 (欧拉给哥德巴赫写信) 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。
编辑本段中国数学家的贡献
残废军人2
2011-01-25
知道答主
回答量:15
采纳率:0%
帮助的人:12.3万
展开全部
大家都很熟悉哥德巴赫猜想,它的内容是:对于任意一个大于4的偶数,都可以分解为两个素数的和。虽然我们不能证明它,但我们可以编一个程序对于给定的大于4的偶数进行验证。现在我们的任务是:对于给定的大于4的偶数,找出它所有本质不同的分解式(分解为两个素数和的式),所谓本质相同也就是说两个式的素数如果一样,则不管顺序如何,都认为是本质相同的,如:24=5+19和24=19+5是本质相同的分解式。
采纳我的吧!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ccf2464
2011-01-22 · TA获得超过1015个赞
知道小有建树答主
回答量:234
采纳率:0%
帮助的人:227万
展开全部
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
严伯钧
2019-02-27 · 跨界学霸,硬派科普
个人认证用户
严伯钧
采纳数:72 获赞数:102557

向TA提问 私信TA
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Anna0648
2011-01-22
知道答主
回答量:8
采纳率:0%
帮助的人:3.2万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式