f(x+y)=f(x)+f(y),f(-3)=a,如果x>0,f(x)<0,f(1)=-½,求f(x)在区间[-2,4]上的最大值和最小值
2个回答
展开全部
f(x+y) = f(x) + f(y), f(-3) = a
if x>0, f(x)<0, f(1) = -1/2
put x=y =1
f(2) = 2f(1) = -1
put x=y = 2
f(4) = 2f(2) = -2
put x=-3,y=1
f(-2) = f(-3)+ f(1)
= a -1/2
for x> y
x = y+c ( c>0)
f(x) = f(y+c)
= f(y) + f(c) (c> 0 , f(c) <0)
< f(y)
f is decreasing function
f(x)在区间[-2,4]上的
最大值 = f(-2)=a -1/2
最小值 = f(4)=-2
if x>0, f(x)<0, f(1) = -1/2
put x=y =1
f(2) = 2f(1) = -1
put x=y = 2
f(4) = 2f(2) = -2
put x=-3,y=1
f(-2) = f(-3)+ f(1)
= a -1/2
for x> y
x = y+c ( c>0)
f(x) = f(y+c)
= f(y) + f(c) (c> 0 , f(c) <0)
< f(y)
f is decreasing function
f(x)在区间[-2,4]上的
最大值 = f(-2)=a -1/2
最小值 = f(4)=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询