高中数列题目,求解~
已知{a[n]}是等差数列,{b[n]}是公比为q的等比数列,a[1]=b[1],a[2]=b[2]不等于a[1],记S[n]是数列b[n]的前n项和。(1)若b[k]=...
已知{a[n]}是等差数列,{b[n]}是公比为q的等比数列,a[1]=b[1],a[2]=b[2]不等于a[1],记S[n]是数列b[n]的前n项和。
(1)若b[k]=a[m](m,k是大于2的正整数),求证:S[k-1]=(m-1)*a[1]
(2)若b[3]=a[i](i是某个正整数),求证:q是整数,且数列{b[n]}是数列{a[n]}的子数列。
我就是最后这个“数列{b[n]}是数列{a[n]}的子数列“不会证,前面都好了,所以请把重点放在第二问上,谢谢了 展开
(1)若b[k]=a[m](m,k是大于2的正整数),求证:S[k-1]=(m-1)*a[1]
(2)若b[3]=a[i](i是某个正整数),求证:q是整数,且数列{b[n]}是数列{a[n]}的子数列。
我就是最后这个“数列{b[n]}是数列{a[n]}的子数列“不会证,前面都好了,所以请把重点放在第二问上,谢谢了 展开
2个回答
展开全部
那我就只写怎么证“数列{b[n]}是数列乎辩{a[n]}的子数列”
若Sk-1=(m-1)a1,则可证bk=am(用证1的倒过来就可以啦)
设k大于2
Sk=b1*(1-q^k)/(1-q)=a1*(1-q^k)/(1-q)
则bk=a〔(1-q^k)/(1-q)〕
因为a1为正整数,所以Sk大于b1+b2+b3
由题可知〔(1-q^k)/(1-q)〕为大于2的正整数
则数列{b[n]}是数列{a[n]}的子数列岁毕缺
恩数贺如果我说得不够清楚可以再发消息问我。
如果我搞错啦,请告诉我,我会再想想的。:-D
若Sk-1=(m-1)a1,则可证bk=am(用证1的倒过来就可以啦)
设k大于2
Sk=b1*(1-q^k)/(1-q)=a1*(1-q^k)/(1-q)
则bk=a〔(1-q^k)/(1-q)〕
因为a1为正整数,所以Sk大于b1+b2+b3
由题可知〔(1-q^k)/(1-q)〕为大于2的正整数
则数列{b[n]}是数列{a[n]}的子数列岁毕缺
恩数贺如果我说得不够清楚可以再发消息问我。
如果我搞错啦,请告诉我,我会再想想的。:-D
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询