统计学,英文版试题。分数不高,但还请各位达人达人达达人鼎力相助,感激不尽!!
展开全部
这道题需要注意的是,虽然居民收入常常不是正态分布 但是在样本量比较大的情况下(大于50),按照中心极限定理,样本均值的分布是接近正态分布的,因此有:
1、
(a)
居民收入的下限=样本平均值 - (样本标准差/SQRT(样本量))×Za/2=69084-32821/SQRT(120)*NORMSINV(1-0.05/2)=63211.7
居民收入的上限=样本平均值 + (样本标准差/SQRT(样本量))×Za/2=69084+32821/SQRT(120)*NORMSINV(1-0.05/2)=74956.3
【*代表乘号,^代表乘方号,sqrt代表开平方,注意标准正态分布是左右对称的,因此有NORMSINV(1-0.05/2)=1.959963985,NORMSINV(0.05/2)= -1.959963985】你将我的数字公式复制、粘贴至Excel的公式编辑栏中就可以直接得到计算结果。
由于NSW的平均收入是46513,低于居民收入的下限,因此我们可以得出结论NSW的平均收入明显低于悉尼居民的人均收入(P<0.05)。
(b)同样,当NSW的平均收入是75055的时候,它就高于居民收入的上限,我们可以得出结论NSW的平均收入明显高于悉尼居民的人均收入(P<0.05)。
2、
样本中120户有18户低于贫困线,那么这个比例就是18/120=0.15=15%,再对这个比率计算95%置信区间:
按二项分布的正态近似公式:
样本标准差=sqrt(0.15*(1-0.15))=0.357071421
平均值的标准误=0.357071421/sqrt(120)=0.032596012
悉尼居民贫困率的下限=0.15-0.032596012*NORMSINV(1-0.05/2)=0.08611299=8.61%
悉尼居民贫困率的上限=0.15+0.032596012*NORMSINV(1-0.05/2)=0.21388701=21.39%
1、
(a)
居民收入的下限=样本平均值 - (样本标准差/SQRT(样本量))×Za/2=69084-32821/SQRT(120)*NORMSINV(1-0.05/2)=63211.7
居民收入的上限=样本平均值 + (样本标准差/SQRT(样本量))×Za/2=69084+32821/SQRT(120)*NORMSINV(1-0.05/2)=74956.3
【*代表乘号,^代表乘方号,sqrt代表开平方,注意标准正态分布是左右对称的,因此有NORMSINV(1-0.05/2)=1.959963985,NORMSINV(0.05/2)= -1.959963985】你将我的数字公式复制、粘贴至Excel的公式编辑栏中就可以直接得到计算结果。
由于NSW的平均收入是46513,低于居民收入的下限,因此我们可以得出结论NSW的平均收入明显低于悉尼居民的人均收入(P<0.05)。
(b)同样,当NSW的平均收入是75055的时候,它就高于居民收入的上限,我们可以得出结论NSW的平均收入明显高于悉尼居民的人均收入(P<0.05)。
2、
样本中120户有18户低于贫困线,那么这个比例就是18/120=0.15=15%,再对这个比率计算95%置信区间:
按二项分布的正态近似公式:
样本标准差=sqrt(0.15*(1-0.15))=0.357071421
平均值的标准误=0.357071421/sqrt(120)=0.032596012
悉尼居民贫困率的下限=0.15-0.032596012*NORMSINV(1-0.05/2)=0.08611299=8.61%
悉尼居民贫困率的上限=0.15+0.032596012*NORMSINV(1-0.05/2)=0.21388701=21.39%
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询