一道高中数学题数学高手速来
若关于x的不等式(2x-1)²<ax²的解集中的整数恰好有3个,则实数a的取值范围是需要答案和详细过程谢谢...
若关于x的不等式(2x-1)²<ax²的解集中的整数恰好有3个,则实数a的取值范围是
需要答案和详细过程谢谢 展开
需要答案和详细过程谢谢 展开
6个回答
展开全部
解答如下:
∵0≤(2x-1)²<ax²,∴a>0
原不等式可以转化为(2x-1)²<(√ax)²
所以不等式(2x-1)²<(√ax)²可以简化为
2x-1<√ax 且2x-1>-√ax 或者 2x-1>√ax 且2x-1<-√ax
所以 前者1/(2+√a)<x<1/(-√a+2) 后者 1/(2-√a)<x<1/(√a+2)
关于x的不等式(2x-1)²<ax²的解集中的整数恰好3个
可以转化为关于x的方程(2x-1)²=ax² 其较大解与较小解之差大于等于3却小于4
所以 3 ≤1/(-√a+2) -1/(2+√a)<4 或者 3 ≤1/(2+√a)-1/(-√a+2) <4
前者推出25/9<a≤49/16 后者-49/16≤a≤-25/9 与a>0矛盾
所以可以推断若关于x的不等式(2x-1)²<ax²的解集中的整数恰好有3个,则实数a的取值范围是
25/9<a≤49/16
∵0≤(2x-1)²<ax²,∴a>0
原不等式可以转化为(2x-1)²<(√ax)²
所以不等式(2x-1)²<(√ax)²可以简化为
2x-1<√ax 且2x-1>-√ax 或者 2x-1>√ax 且2x-1<-√ax
所以 前者1/(2+√a)<x<1/(-√a+2) 后者 1/(2-√a)<x<1/(√a+2)
关于x的不等式(2x-1)²<ax²的解集中的整数恰好3个
可以转化为关于x的方程(2x-1)²=ax² 其较大解与较小解之差大于等于3却小于4
所以 3 ≤1/(-√a+2) -1/(2+√a)<4 或者 3 ≤1/(2+√a)-1/(-√a+2) <4
前者推出25/9<a≤49/16 后者-49/16≤a≤-25/9 与a>0矛盾
所以可以推断若关于x的不等式(2x-1)²<ax²的解集中的整数恰好有3个,则实数a的取值范围是
25/9<a≤49/16
展开全部
g(x)=(2x-1)²是关于直线x=1/2对称的开口向上的抛物线,设f(x)=ax²,则本题就是f(x)的图像要比g(x)的图像高的x的整数值只有三个。作出两个函数的图像。。。发现:当x从1开始才希望,所以这三个整数应该是1,2,3。。所以f(3)≥g(3)且f(4)<g(4),解得:[25/9,49/16)
图像解法是这个题目的最好解法。
图像解法是这个题目的最好解法。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不等式转换一下就变成了(1/x-2)^2<a
考虑x的整数解,从1开始增加的时候(1/x-2)^2的值是递增的,从-1开始减少的时候(1/x-2)^2的值是递减的,所以要通过参数a把x的整数解限定到三个只需考虑(1/x-2)^2当x能取到三个整数的最小值和能取到四个整数的最小值
而x->-无穷的时候(1/x-2)^2趋近于4,故x取负数(1/x-2)^2最小也大于4
当x取正整数的时候(1/x-2)^2一定小于4,故x一定为正整数
而x为正整数(1/x-2)^2递增,所以x的正整数取值应该为1,2,3
故参数a应该使x能取到3而取不到4
即 (1/3-2)^2<a<=(1/4-2)^2 左边是保证能取到3右边保证取不到4
解出答案(25/9,49/16]
考虑x的整数解,从1开始增加的时候(1/x-2)^2的值是递增的,从-1开始减少的时候(1/x-2)^2的值是递减的,所以要通过参数a把x的整数解限定到三个只需考虑(1/x-2)^2当x能取到三个整数的最小值和能取到四个整数的最小值
而x->-无穷的时候(1/x-2)^2趋近于4,故x取负数(1/x-2)^2最小也大于4
当x取正整数的时候(1/x-2)^2一定小于4,故x一定为正整数
而x为正整数(1/x-2)^2递增,所以x的正整数取值应该为1,2,3
故参数a应该使x能取到3而取不到4
即 (1/3-2)^2<a<=(1/4-2)^2 左边是保证能取到3右边保证取不到4
解出答案(25/9,49/16]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵0≤(2x-1)²<ax²,∴a>0
原不等式--->(2x-1)²-(bx)²=[(2+√a)x-1][(2-√a)x-1]<0
∵解集中的整数解为有限个(3个),
∴(2+√a)(2-√a)>0--->0<√a<2
--->不等式的解集为 M=(1/(2+√a),1/(2-√a)),其中恰有3个整数
∵2<2+√a<4,
∴1/4<1/(2+√a)<1/2,即方程较小的根在1/4和1/2之间
∴如果M中恰有3个整数,则必为1、2、3
即:3<1/(2-√a)≤4
--->1/4≤2-√a<1/3
--->5/3<√a≤7/4
----->25/9<a≤49/16
原不等式--->(2x-1)²-(bx)²=[(2+√a)x-1][(2-√a)x-1]<0
∵解集中的整数解为有限个(3个),
∴(2+√a)(2-√a)>0--->0<√a<2
--->不等式的解集为 M=(1/(2+√a),1/(2-√a)),其中恰有3个整数
∵2<2+√a<4,
∴1/4<1/(2+√a)<1/2,即方程较小的根在1/4和1/2之间
∴如果M中恰有3个整数,则必为1、2、3
即:3<1/(2-√a)≤4
--->1/4≤2-√a<1/3
--->5/3<√a≤7/4
----->25/9<a≤49/16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由原不等式可知a>0
将原不等式移项合并分解得:[X-(2+根号下a)/(4-a)]*[X-(2-根号下a)/4-a)]<0
于是它的解集为:......因为解集恰好有三个整数,所以根号下a也为整数,由解集可知后者大于前者,由此列式得出
将原不等式移项合并分解得:[X-(2+根号下a)/(4-a)]*[X-(2-根号下a)/4-a)]<0
于是它的解集为:......因为解集恰好有三个整数,所以根号下a也为整数,由解集可知后者大于前者,由此列式得出
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询