
分别用数学归纳法证明等差数列的前n项和公式Sn=na1+1/2n(n-1)d与等比数列的前n项和公式Sn=a1(1-q^n)/(1-q)
1个回答
展开全部
1)
1=a1+0d=a1成立
2)
假设n=k时Sk=ka1+k(k-1)d/2成立。
则S(k+1)=Sk+a(k+1)
=ka1+k(k-1)d/2+a1+kd
=(k+1)a1+(k+1)(k+1-1)d/2也成立,
综上,等差数列的前n项和公式Sn=na1+n(n-1)d/2
1)
1=a1(1-q)/(1-q)=a1成立(q!=1)
2)
假设n=k时Sk=a1(1-q^k)/(1-q)成立
则S(k+1)=Sk+a(k+1)
=a1(1-q^k)/(1-q)+a1*q^k
=a1(1-q^(k+1))/(1-q)也成立
综上,等比数列的前n项和公式Sn=a1(1-q^n)/(1-q)
1=a1+0d=a1成立
2)
假设n=k时Sk=ka1+k(k-1)d/2成立。
则S(k+1)=Sk+a(k+1)
=ka1+k(k-1)d/2+a1+kd
=(k+1)a1+(k+1)(k+1-1)d/2也成立,
综上,等差数列的前n项和公式Sn=na1+n(n-1)d/2
1)
1=a1(1-q)/(1-q)=a1成立(q!=1)
2)
假设n=k时Sk=a1(1-q^k)/(1-q)成立
则S(k+1)=Sk+a(k+1)
=a1(1-q^k)/(1-q)+a1*q^k
=a1(1-q^(k+1))/(1-q)也成立
综上,等比数列的前n项和公式Sn=a1(1-q^n)/(1-q)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询