设A,B,C是三个任意集合,证明:A×(B∪C)=(AB)∪(A×C),A×(B∩ C)=(AB)∩ (A×C)
设A,B,C为任意三个集合,证明:A×(B∪C)=(A×B)∪(A×C)A×(B∩C)=(A×B)∩(A×C)此题是证明笛卡儿乘积运算对并,交,差运算分别满足分配律定理...
设A,B,C为任意三个集合,
证明:A×(B∪C)=(A×B)∪(A×C)
A×(B∩ C)=(A×B)∩ (A×C)
此题是证明笛卡儿乘积运算对并,交,差运算分别满足分配律定理 展开
证明:A×(B∪C)=(A×B)∪(A×C)
A×(B∩ C)=(A×B)∩ (A×C)
此题是证明笛卡儿乘积运算对并,交,差运算分别满足分配律定理 展开
展开全部
(1)设(x,y)属于A×(B∪C),则x属于A,且y属于B∪C,不妨令y属于B,则(x,y)属于A×B,即有A×(B∪C)属于(A×B)∪(A×C),固A×(B∪C)属于(A×B)∪(A×C)。
设(x,y)属于(A×B)∪(A×C),则(x,y)属于A×B或者属于A×C,不妨令(x,y)属于A×B,则x属于A,且y属于B,即(x,y)属于A×(B∪C),固(A×B)∪(A×C)属于A×(B∪C)。
综上A×(B∪C)=(A×B)∪(A×C)
(2)设(x,y)属于A×(B∩ C),则x属于A,且y属于B也属于C,则(x,y)属于A×B也属于A×C,即有A×(B∩ C)属于(A×B)∩ (A×C),固A×(B∩ C)属于(A×B)∩ (A×C)
设(x,y)属于(A×B)∩ (A×C),则(x,y)属于A×B也属于A×C,则x属于A,且y属于B,也属于C,有y属于B∩ C,即(x,y)属于A×(B∩ C),固(A×B)∩ (A×C)属于A×(B∩ C)
综上A×(B∩ C)=(A×B)∩ (A×C)
设(x,y)属于(A×B)∪(A×C),则(x,y)属于A×B或者属于A×C,不妨令(x,y)属于A×B,则x属于A,且y属于B,即(x,y)属于A×(B∪C),固(A×B)∪(A×C)属于A×(B∪C)。
综上A×(B∪C)=(A×B)∪(A×C)
(2)设(x,y)属于A×(B∩ C),则x属于A,且y属于B也属于C,则(x,y)属于A×B也属于A×C,即有A×(B∩ C)属于(A×B)∩ (A×C),固A×(B∩ C)属于(A×B)∩ (A×C)
设(x,y)属于(A×B)∩ (A×C),则(x,y)属于A×B也属于A×C,则x属于A,且y属于B,也属于C,有y属于B∩ C,即(x,y)属于A×(B∩ C),固(A×B)∩ (A×C)属于A×(B∩ C)
综上A×(B∩ C)=(A×B)∩ (A×C)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询