
高中数学题求解,急急急
已知函数f(x)=x^2+(a-2)x+1,g(x)=xln^2(x+1),其中a属于R。<1>若函数y=f(x),y=g(x)在[0,1]上的零点个数相同,求a的最大值...
已知函数f(x)=x^2+(a-2)x+1,g(x)=x ln^2 (x+1),其中a属于R。<1>若函数y=f(x),y=g(x)在[0,1]上的零点个数相同,求a的最大值。
展开
2个回答
展开全部
先求g(x)
得到有1个零点
所以f(x)=0 一解
因为x=0 时,y=1
又因为函数图像开口向上
X=1 Y=a
a小于等于0
当Y=0
X= ( 2-a+根号(a^2-4a) )/2大于1
根号(a^2-4a)大于a
因为a小于等于0
所以a最大0
得到有1个零点
所以f(x)=0 一解
因为x=0 时,y=1
又因为函数图像开口向上
X=1 Y=a
a小于等于0
当Y=0
X= ( 2-a+根号(a^2-4a) )/2大于1
根号(a^2-4a)大于a
因为a小于等于0
所以a最大0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询