对数函数问题
log189=alog185=b则log3645=?用ab表示?y=log2(x^2-ax-a)在x小于一减根号3上是增函数则a的取值范围?...
log18 9 = a log18 5 =b 则log36 45= ?
用a b表示?
y=log2 (x^2-ax-a)在x小于 一减根号3 上是增函数 则a的取值范围? 展开
用a b表示?
y=log2 (x^2-ax-a)在x小于 一减根号3 上是增函数 则a的取值范围? 展开
1个回答
展开全部
log18 (9 ) = a,
即log18 (18/2) = a,
1- log18 (2) = a, log18 (2) =1-a.
log36( 45)= log18 (45)/ log18 (36)
=[ log18 (9 )+ log18 (5)]/[ log18 (18×2)]
=[ log18 (9 )+ log18 (5)]/ [ log18 (18)+ log18 (2)]
=(a+b)/(1+1-a)= (a+b)/(2-a)
y=log2 (x^2-ax-a)由y=log2 (t)与t= x^2-ax-a复合而成,
y=log2 (t)在定义域上单调递增,
所以t= x^2-ax-a在(-√3,+∞)上递增,
该二次函数的对称轴为x=a/2,则a/2≤-√3,a≤-2√3.
并且函数t= x^2-ax-a作为真数,t的最小值必须大于0,
函数t的最小值是x=-√3时取到,3+√3a-a>0, a>(-3-3√3)/2.
综上可知:(-3-3√3)/2<a≤-2√3.
即log18 (18/2) = a,
1- log18 (2) = a, log18 (2) =1-a.
log36( 45)= log18 (45)/ log18 (36)
=[ log18 (9 )+ log18 (5)]/[ log18 (18×2)]
=[ log18 (9 )+ log18 (5)]/ [ log18 (18)+ log18 (2)]
=(a+b)/(1+1-a)= (a+b)/(2-a)
y=log2 (x^2-ax-a)由y=log2 (t)与t= x^2-ax-a复合而成,
y=log2 (t)在定义域上单调递增,
所以t= x^2-ax-a在(-√3,+∞)上递增,
该二次函数的对称轴为x=a/2,则a/2≤-√3,a≤-2√3.
并且函数t= x^2-ax-a作为真数,t的最小值必须大于0,
函数t的最小值是x=-√3时取到,3+√3a-a>0, a>(-3-3√3)/2.
综上可知:(-3-3√3)/2<a≤-2√3.
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询