已知函数f(x)=(4x²-7)/(2-x),x∈[0,1]
(1)求f(x)的单调区间和值域(2)设a≥1,函数g(x)=x²-3a²x-2ax,x∈[0,1],若对于任意x₁∈[0,1],总存在x...
(1)求f(x)的单调区间和值域
(2)设a≥1,函数g(x)=x²-3a²x-2ax,x∈[0,1],若对于任意x₁∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x₁)成立,求a的取值范围 展开
(2)设a≥1,函数g(x)=x²-3a²x-2ax,x∈[0,1],若对于任意x₁∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x₁)成立,求a的取值范围 展开
展开全部
1.通过设t=2-x,可得x∈[0,1/2] 时单调递增。x∈[1/2,1] 时单调递减 值域为[-4,-3]
2.由一可得g(x0)范围大于[-4,-3] 因为g(x)对称轴大于1,所以在x∈[0,1] 上递减,所以g(1)为最小值。g(0)为最大值,[-4,-3] 属于g(x)的值域即可、
2.由一可得g(x0)范围大于[-4,-3] 因为g(x)对称轴大于1,所以在x∈[0,1] 上递减,所以g(1)为最小值。g(0)为最大值,[-4,-3] 属于g(x)的值域即可、
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
233333333333333333333333333333333
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询