点M是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,以M为圆心的园与X轴相切于椭圆的焦点F园M与Y轴相交于PQ,若PQM是

点M是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,以M为圆心的园与X轴相切于椭圆的焦点F园M与Y轴相交于PQ,若PQM是钝角三角形,则椭圆的离心率的取值范... 点M是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,以M为圆心的园与X轴相切于椭圆的焦点F园M与Y轴相交于PQ,若PQM是钝角三角形,则椭圆的离心率的取值范围为? 展开
 我来答
风飘絮1215
2011-01-24 · TA获得超过1069个赞
知道小有建树答主
回答量:88
采纳率:0%
帮助的人:62.4万
展开全部
∵圆M与X轴相切与焦点F
∴不妨设M(c,y),则(因为相切,则圆心与F的连线必垂直于X轴)
M在椭圆上,则y=b²/a或-b²/a(a²=b²+c²)
∴圆的半径为b²/a
过M作MN⊥Y轴与N,则PN=NQ,MN=c(PN,NQ均为半径,则△PQM为等腰三角形)
∴PN=NQ=√[(b²/a)²-c²]
∵∠PQM为钝角,则∠PMN=∠QMN>45°
即PN=NQ>MN=c
所以得√[(b²/a)²-c²]>c,即b^4/a²-c²>c²
得(a²-c²)²/a²>2c²
a²-2c²+c²e²>2c²
1/e²-4+e²>0
e^4-4e²+1>0
(e²-2)²-3>0
e²-2<-√3(0<e<1)
e²<-√3+2
∴0<e<(√3-1)²/2
liususu1
2011-01-26 · TA获得超过102个赞
知道答主
回答量:29
采纳率:0%
帮助的人:40.4万
展开全部

解答看图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-01-24
展开全部
4.685
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式