三角形的题,请各位帮帮忙!!! (初一)
已知等腰三角形两腰所对的内角相等,过正三角形ABC的顶点B,在∠ABC内任意引一线段BM,且BM=AB,如图,则∠AMC的大小会发生变化吗?试说出你的结论和理由。...
已知等腰三角形两腰所对的内角相等,过正三角形ABC的顶点B,在∠ABC内任意引一线段BM,且BM=AB,如图,则∠AMC的大小会发生变化吗?试说出你的结论和理由。
展开
展开全部
不会变。
证明:因为AB=BM=BC 所以 ∠BAM=∠BMA,∠BCM=∠BMC
所以∠AMC=∠BAM+∠BCM
四边形内角和为360° 而∠ABC=60°
所以∠AMC+∠BAM+∠BCM=300°。 ∠AMC=∠BAM+∠BCM =150°
所以∠AMC大小不会变
证明:因为AB=BM=BC 所以 ∠BAM=∠BMA,∠BCM=∠BMC
所以∠AMC=∠BAM+∠BCM
四边形内角和为360° 而∠ABC=60°
所以∠AMC+∠BAM+∠BCM=300°。 ∠AMC=∠BAM+∠BCM =150°
所以∠AMC大小不会变
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设∠ABM=x,则∠CBM=60-x
AB=BM
∠BMA=(180-x)/2
BM=BC
∠BMC=(180-∠MBC)/2=(180-60+x)/2=(120+x)/2
∠AMC=∠BMA+∠BMC=(180-x)/2 + (120+x)/2=150
所以不会发生改变
AB=BM
∠BMA=(180-x)/2
BM=BC
∠BMC=(180-∠MBC)/2=(180-60+x)/2=(120+x)/2
∠AMC=∠BMA+∠BMC=(180-x)/2 + (120+x)/2=150
所以不会发生改变
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询