求助一道高中数学题·高手来下谢谢 20
已知函数f(x)=2√3sinx-cosx+2cos²x-1(x∈R)(1)求函数f(x)的最小正周期及在区间[0,π/2]上的最大值和最小值(2)若f(x0)...
已知函数f(x)=2√3 sinx-cosx+2cos²x-1(x∈R)
(1)求函数f(x)的最小正周期及在区间[0,π/2]上的最大值和最小值
(2)若f(x0)=6/5,x0∈[π/4,π/2],求cos2x0的值
需要答案和详细过程谢谢 展开
(1)求函数f(x)的最小正周期及在区间[0,π/2]上的最大值和最小值
(2)若f(x0)=6/5,x0∈[π/4,π/2],求cos2x0的值
需要答案和详细过程谢谢 展开
4个回答
展开全部
解:(1) f(x)=2√3 sinxcosx+2cos²x-1(x∈R)
=√3 sin2x+cos2x (x∈R)
=2(√3/2* sin2x+1/2*cos2x)(x∈R)
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6) 所以最小正周期为π 0<x<π/2 => 0<2x<π
=> π/6<2x+π/6<7/6π 当2x+π/6=π/2 x=π/6时,f(π/6)max=2 最大值为2;
当2x+π/6=7/6π x=π/2 f(π/2)min=-1 最小值为-1.
(2)当 2sin(2xo+π/6)=6/5 sin(2xo+π/6) =3/5 xo∈[π/4,π/2],
=>2/3π<2xo+π/6<7/6π 所以 cos(2xo+π/6) =-4/5
=> √3 /2*sin2xo+1/2cos2xo=3/5 (a)
=> √3/2*cos2xo -1/2sin2xo=-4/5 (b) 联立方程消去sin2xo
可以算出sin2xo= √3cos2xo+8/5代入(a) √3/2*[√3cos2xo+8/5]+1/2cos2xo=3/5
3/2cos2xo+1/2cos2xo=3/5-4√3/5 => 2cos2xo=3/5-4√3/5
=>cos2xo=3/10-2√3/5
=√3 sin2x+cos2x (x∈R)
=2(√3/2* sin2x+1/2*cos2x)(x∈R)
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6) 所以最小正周期为π 0<x<π/2 => 0<2x<π
=> π/6<2x+π/6<7/6π 当2x+π/6=π/2 x=π/6时,f(π/6)max=2 最大值为2;
当2x+π/6=7/6π x=π/2 f(π/2)min=-1 最小值为-1.
(2)当 2sin(2xo+π/6)=6/5 sin(2xo+π/6) =3/5 xo∈[π/4,π/2],
=>2/3π<2xo+π/6<7/6π 所以 cos(2xo+π/6) =-4/5
=> √3 /2*sin2xo+1/2cos2xo=3/5 (a)
=> √3/2*cos2xo -1/2sin2xo=-4/5 (b) 联立方程消去sin2xo
可以算出sin2xo= √3cos2xo+8/5代入(a) √3/2*[√3cos2xo+8/5]+1/2cos2xo=3/5
3/2cos2xo+1/2cos2xo=3/5-4√3/5 => 2cos2xo=3/5-4√3/5
=>cos2xo=3/10-2√3/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询