sn=1+1/2+1/3+...1/n,证明:当n≥2时,sn^2≥2(s2/2+s3/3+...sn/n)
1个回答
展开全部
Sn^2=(S(n-1)+1/n)^2=[S(n-1)]^2+2S(n-1)/n+1/n^2
=[S(n-1)]^2+[2S(n-1)+2/n]/n-1/n^2
=[S(n-1)]^2+2Sn/n-1/n^2
以此类推可得
Sn^2=S1^2-1/2^2-1/3^2-……-1/n^2+2(s2/2+s3/3+...sn/n)
只要证明n>=2时,
S1^2-1/2^2-1/3^2-……-1/n^2>=0即可
因为,S1=1
且对任意n>=1均有,1/n-1/(n+1)^2
=[(n+1)^2-n]/n(n+1)^2=(n^2+n+1)/n(n+1)^2>(n^2+n)/n(n+1)^2=1/(n+1)
故S1^2-1/2^2-1/3^2-……-1/n^2
=(1/1^2-1/2^2)-1/3^2-……-1/n^2
>1/2-1/3^2-……-1/n^2
>1/3-……-1/n^2
>1/(n-1)-1/n^2>0
原式得证。
=[S(n-1)]^2+[2S(n-1)+2/n]/n-1/n^2
=[S(n-1)]^2+2Sn/n-1/n^2
以此类推可得
Sn^2=S1^2-1/2^2-1/3^2-……-1/n^2+2(s2/2+s3/3+...sn/n)
只要证明n>=2时,
S1^2-1/2^2-1/3^2-……-1/n^2>=0即可
因为,S1=1
且对任意n>=1均有,1/n-1/(n+1)^2
=[(n+1)^2-n]/n(n+1)^2=(n^2+n+1)/n(n+1)^2>(n^2+n)/n(n+1)^2=1/(n+1)
故S1^2-1/2^2-1/3^2-……-1/n^2
=(1/1^2-1/2^2)-1/3^2-……-1/n^2
>1/2-1/3^2-……-1/n^2
>1/3-……-1/n^2
>1/(n-1)-1/n^2>0
原式得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询