高三数学函数题: 已知函数f(x)=x^3+ax^2+bx+c (1)若函数f(x)在区间【-1,0】上是单调减函数,求

a^2+b^2的最小值(2)若函数f(x)的三个零点分别为:根号(1-t),1,根号(1+t),求证:a^2=2b+3... a^2+b^2的最小值
(2)若函数f(x)的三个零点分别为 :根号(1-t),1,根号(1+t),求证:a^2=2b+3
展开
瓮密0ga876
2011-01-31
知道答主
回答量:10
采纳率:0%
帮助的人:9.5万
展开全部
(1)f'(x)=3x^2+2ax+b,
由题意f'(1)≤0,f(0)≤0,即3-2a+b≤0,b≤0
当a大于0,b小于0时,由均值不等式,√(((a^2/4)+(a^2/4)+(a^2/4)+(a^2/4)+b^2)/5)≥(2a-b)/5=3/5(注意到a>0,b<0)
所以a^2+b^2≥9/5,当且仅当a=6/5,b=-3/5时取等
当a≤0时,b≤2a-3≤-3,所以a^2+b^2≥b^2≥9>9/5,
当型扒段b=0时,a≥3/2,a^2+b^2≥9/4>9/5
综上,a^2+b^2的最小值为9/5
(此历2)由高次卜誉方程韦达定理,a=√(1-t)+1+√(1+t), b=√(1-t)+√(1+t)+√(1-t)(1+t),
所以a^2=1-t+1+1+t+2√(1-t)+2√(1+t)+2√(1-t)(1+t)=2b+3
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式