怎么证明:(1+X)^n>1+nX这个式子?
4个回答
展开全部
对(1+X)^n进行二项展开,等于x^n+nx+……+1,大于1+nX
二项展开的通式:
(x + a)^n = x^n + nax^(n-1) + n(n-1)a^2x^(n-2)/2 + ... + n!/[k!(n-k)!]a^kx^(n-k) + ... + nxa^(n-1) + a^n
二项展开的通式:
(x + a)^n = x^n + nax^(n-1) + n(n-1)a^2x^(n-2)/2 + ... + n!/[k!(n-k)!]a^kx^(n-k) + ... + nxa^(n-1) + a^n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一种方法是用用排列组合展开
每一项都是正的,故省略前面只留下后面两项原式大于nX+1
也可用数学归纳法:
当n=1是验证成立,假设当n=k时成立,可推出n=k+1也成立,故成立。
字数限制不详细叙述
每一项都是正的,故省略前面只留下后面两项原式大于nX+1
也可用数学归纳法:
当n=1是验证成立,假设当n=k时成立,可推出n=k+1也成立,故成立。
字数限制不详细叙述
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在n>=2,x>0时成立
用数学归纳法
n=2时
(1+x)^2=1+2x+x^2>1+2x
假设n=k成立,即(1+x)^2>1+kx
则,n=k+1时,有
(1+x)^(k+1)
=(1+x)^k*(1+x)>(1+kx)(1+x)=1+kx^2+(k+1)x>1+(k+1)x
对x>0时,n>=2成立
用数学归纳法
n=2时
(1+x)^2=1+2x+x^2>1+2x
假设n=k成立,即(1+x)^2>1+kx
则,n=k+1时,有
(1+x)^(k+1)
=(1+x)^k*(1+x)>(1+kx)(1+x)=1+kx^2+(k+1)x>1+(k+1)x
对x>0时,n>=2成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询