在平面直角坐标系中,O为坐标原点,二次函数Y=-X^2+bX+3的点经过点A(-1,0),定点为b
1)求这个二次函数的解析式,并写出顶点B的坐标2)如果点C的坐标为(4,0),AE垂直BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标...
1)求这个二次函数的解析式,并写出顶点B的坐标
2)如果点C的坐标为(4,0),AE垂直BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标 展开
2)如果点C的坐标为(4,0),AE垂直BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标 展开
展开全部
(1)将A(-1,0)坐标代入Y=-X方+bX+3
求得b=2
所以该二次函数解析式为y=-x^2+2x+3
代入顶点公式[-b/2a,(4ac-b^2)/2a]
得B(2,0)
(2) 先将bc这条直线的解析式求出来,B(1,4)c(4,0),4x+3y-16=0
又因为垂直,且经过a,可以得到过ae的解析式为y=3/4x+3/4
那么又因为de=1,根据点到直线距离公式可以得到ae=4
d的纵坐标为e的纵坐标的3/4,又因为根据相似三角形可以得到e的纵坐标,即ac的高,为12/5,那么d的纵坐标为9/5,代入ae解析式,可得横坐标为7/5
所以D(7/5,9/5)
求得b=2
所以该二次函数解析式为y=-x^2+2x+3
代入顶点公式[-b/2a,(4ac-b^2)/2a]
得B(2,0)
(2) 先将bc这条直线的解析式求出来,B(1,4)c(4,0),4x+3y-16=0
又因为垂直,且经过a,可以得到过ae的解析式为y=3/4x+3/4
那么又因为de=1,根据点到直线距离公式可以得到ae=4
d的纵坐标为e的纵坐标的3/4,又因为根据相似三角形可以得到e的纵坐标,即ac的高,为12/5,那么d的纵坐标为9/5,代入ae解析式,可得横坐标为7/5
所以D(7/5,9/5)
展开全部
因为经过 A(-1,0), 所以代入,得 0=-1-b+3 所以b为2
所以表达式为 Y=-X^2+2X+3 ==-(X^2-2X+1)+4=-(x-1)^2+4 所以顶点为 B(1,4)
所以BC直线的斜率为 (4-0)/(1-4)=-4/3 因为 AE垂直于BC,所以 AE的斜率XBC的斜率=-1,所以AE斜率为3/4
所以AE直线为 y=3(x+1)/4, BC直线为y=-4(x-4)/3
可求得交点,即垂足E为(11/5,12/5)
又因为DE=1 即(x-11/5)^2+(y-12/5)^2=1
又因为D在AE上,即y=3(x+1)/4 可得
x=3 或x=7/5
所以D 为(3,3),或(7/5,9/5)
所以表达式为 Y=-X^2+2X+3 ==-(X^2-2X+1)+4=-(x-1)^2+4 所以顶点为 B(1,4)
所以BC直线的斜率为 (4-0)/(1-4)=-4/3 因为 AE垂直于BC,所以 AE的斜率XBC的斜率=-1,所以AE斜率为3/4
所以AE直线为 y=3(x+1)/4, BC直线为y=-4(x-4)/3
可求得交点,即垂足E为(11/5,12/5)
又因为DE=1 即(x-11/5)^2+(y-12/5)^2=1
又因为D在AE上,即y=3(x+1)/4 可得
x=3 或x=7/5
所以D 为(3,3),或(7/5,9/5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询