数学问题:1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+…+1/(1+2+3+4+…+n) 的值 ,写出过程

古筱月影
2011-01-27 · TA获得超过711个赞
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:87万
展开全部
首先:1+2+3+4+…+n=n(n+1)/2
∴原式=2/(2*3)+2/(3*4)+2/(4*5)+…+2/(n(n+1))
=2(1/2-1/3+1/3-1/4+1/4-1/5+…+1/n-1/(n+1))
=2(1/2-1/(n+1))
=(n-1)/(n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式