
sin(α+β)=1 证明tan(2α+β)+tanβ
展开全部
因为sin(α+β)=1,所以cos(α+β)=0,则sin2(α+β)=sin(2β+2α)=2sin(α+β)cos(α+β)=0
tan(2α+β)+tanβ=sin(2α+β)/cos(2α+β)+sinβ/cosβ{把分母提出来}=1/[cosβ*cos(2α+β)] *(sin(2α+β)cosβ+cos(2α+β)sinβ){对后面的括号里的式子用三角公式)=1/[cosβ*cos(2α+β)] *sin(2α+β+β)=1/[cosβ*cos(2α+β)] *sin(2α+2β)=0
当然在前面提出分母的时候讨论一下分母为0的情况,这题就完美了。
tan(2α+β)+tanβ=sin(2α+β)/cos(2α+β)+sinβ/cosβ{把分母提出来}=1/[cosβ*cos(2α+β)] *(sin(2α+β)cosβ+cos(2α+β)sinβ){对后面的括号里的式子用三角公式)=1/[cosβ*cos(2α+β)] *sin(2α+β+β)=1/[cosβ*cos(2α+β)] *sin(2α+2β)=0
当然在前面提出分母的时候讨论一下分母为0的情况,这题就完美了。

2025-08-22 广告
联系方式:13632754400 深圳市恒谱生科学仪器有限公司是集液相色谱柱、液相保护柱和液相在线过滤器的研发、生产与销售,以及化合物鉴定检测、检测方法开发、标准品制备等多谱分析纯化解决方案服务于一体的的专业供应商。多年来,秉承“赋能客户,...
点击进入详情页
本回答由SF恒谱生提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询