已知F1F2在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足OA+OB

已知F1F2在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足OA+OB=0(是向量),AF·F1F2=0,... 已知F1F2在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足OA+OB=0(是向量),AF·F1F2=0,椭圆的离心率是更号2/2.
求直线AB的方程;(2)若三角形ABF2的面积等于4更号2,求椭圆方程;(3)在(2)的条件下证明是否存在点M使三角形MAB的面积是8更号3?
展开
251921902
2011-02-04 · 超过24用户采纳过TA的回答
知道答主
回答量:76
采纳率:0%
帮助的人:89.9万
展开全部

解:  (Ⅰ)由 知直线AB经过原点,又由 

因为椭圆离心率等于 ,故

椭圆方程可以写成 , 设 所以 ,

故直线AB的斜率 ,因此直线AB的方程为  

   (Ⅱ)连接AF¬1、BF1,由椭圆的对称性可知 ,

所以 故椭圆方程为  

   (Ⅲ)由(Ⅱ)可以求得 

假设在椭圆上存在点M使得 的面积等于 ,设点M到直线AB的距离为d,则应有 ,所以  

设M所在直线方程为 与椭圆方程联立消去x得方程 

即  故在椭圆上不存在点M使得 的面积等于

与时俱进sp
2011-01-31 · TA获得超过314个赞
知道答主
回答量:56
采纳率:0%
帮助的人:44.3万
展开全部
这样吧,给你一点提示,自己做有效果些。设A(X1,Y1)B(X2,Y2)
既然OA+OB=0,那么就有X1+X2=0,Y1+y2=0
所以直线AB一定关于原点对称,即直线为y=kX
AF2*F1F2=0,AF2垂直于X轴,A点你应该求得出,A(c,b^2/a)求出斜率,最后用a,b代入最后结果
直线AB就解出来了!
(2)离心率既然是更号2/2,设椭圆为X^2/(2b^2)+Y^2/b^2,联立直线方程消去Y,得AX^2+BX^2+C=0.。
S三角形ABF2=S三角形AOF2+S三角形BOF2
=1/2(F1O)*|x1-X2|=4*更号2(用距离公式与弦长公式一样,但用两三角形相加(2)会更快)
|x1-X2|=更号(B^2-4AC)/|A|,最后解出b,求出方程。
(3)只能根距离公式与弦长公式算了,或用切线
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
狮子家的猫
2011-01-27 · TA获得超过122个赞
知道答主
回答量:112
采纳率:0%
帮助的人:71.3万
展开全部
哦天呐,你应该问你老师。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式