如图,三角形abc是边长为六的等边三角形,点p是ac边上一动点,由点a向点c运动(于点a,c不重合
如图,三角形abc是边长为六的等边三角形,点p是ac边上一动点,由点a向点c运动(于点a,c不重合),点q是cd延长线上一动点,与点p同时以相同的速度由b向cb延长线方向...
如图,三角形abc是边长为六的等边三角形,点p是ac边上一动点,由点a向点c运动(于点a,c不重合),点q是cd延长线上一动点,与点p同时以相同的速度由b向cb延长线方向运动(点q不与点b重合),过点p作pe垂直ab于点e,连接pq交ab于点d
(1) 展开
(1) 展开
展开全部
解:(1)∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QCP=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+C=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=½QC,即6﹣x=½(6+x),解得x=2;
(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q做匀速运动且速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
∴在△APE和△BQF中,
∵∠A=∠FBQ∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴∠A=∠FBQ
AP=BQ
∠AEP=∠BFQ
∴△APE≌△BQF,
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=½EF,
∵EB+AE=BE+BF=AB,
∴DE=½AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴当点P、Q运动时,线段DE的长度不会改变.
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QCP=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+C=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=½QC,即6﹣x=½(6+x),解得x=2;
(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q做匀速运动且速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
∴在△APE和△BQF中,
∵∠A=∠FBQ∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴∠A=∠FBQ
AP=BQ
∠AEP=∠BFQ
∴△APE≌△BQF,
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=½EF,
∵EB+AE=BE+BF=AB,
∴DE=½AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴当点P、Q运动时,线段DE的长度不会改变.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询