求第一问答案和第二问过程
展开全部
C(sinα,cosα)在 α∈(π/2,3π/2)时的轨迹
是单位圆的第三象限和第四象限
1)在 α∈(π/2,π)时 |AC|<|BC|
若 |AC|=|BC|,只可能在 α∈(π,3π/2)时
(3-sinα)^2+(cosα)^2=(sinα)^2+(3-cosα)^2
9-6sinα+(sinα)^2+(cosα)^2=(sinα)^2+9-6cosα+(cosα)^2
sinα=cosα
α=5π/4
2)若矢量AC●矢量BC=-1
只可能在 α∈(π/2,3π/4)时
2α∈(π,3π/4)
那么 (0-cosα)/(3-sinα)*(3-cosα)/(0-sinα)=-1
(3-cosα)*cosα+(3-sinα)*sinα=0
3(sinα+cosα)=1
(sinα+cosα)^2=1+2sinα*cosα=(1/3)^2
sin(2α)=2sinα*cosα=(1/3)^2-1=-8/9
cos(2α)=-√(1-(sin(2α))^2)=-1/9*√17
2(sinα)^2=1-cos(2α)=1+1/9*√17
tanα=-√(1-cos(2α))/√(1+cos(2α))
=-√(1+1/9*√17)/√(1-1/9*√17)
=-8/(9-√17)
所求解的值
=(1+1/9*√17-8/9)/(1-8/(9-√17))
=(1+√17)/9*(-8/(1+√17))
=-8/9
要记得采纳哦
是单位圆的第三象限和第四象限
1)在 α∈(π/2,π)时 |AC|<|BC|
若 |AC|=|BC|,只可能在 α∈(π,3π/2)时
(3-sinα)^2+(cosα)^2=(sinα)^2+(3-cosα)^2
9-6sinα+(sinα)^2+(cosα)^2=(sinα)^2+9-6cosα+(cosα)^2
sinα=cosα
α=5π/4
2)若矢量AC●矢量BC=-1
只可能在 α∈(π/2,3π/4)时
2α∈(π,3π/4)
那么 (0-cosα)/(3-sinα)*(3-cosα)/(0-sinα)=-1
(3-cosα)*cosα+(3-sinα)*sinα=0
3(sinα+cosα)=1
(sinα+cosα)^2=1+2sinα*cosα=(1/3)^2
sin(2α)=2sinα*cosα=(1/3)^2-1=-8/9
cos(2α)=-√(1-(sin(2α))^2)=-1/9*√17
2(sinα)^2=1-cos(2α)=1+1/9*√17
tanα=-√(1-cos(2α))/√(1+cos(2α))
=-√(1+1/9*√17)/√(1-1/9*√17)
=-8/(9-√17)
所求解的值
=(1+1/9*√17-8/9)/(1-8/(9-√17))
=(1+√17)/9*(-8/(1+√17))
=-8/9
要记得采纳哦
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询