在三角形ABC中,角A、B、C所对的边分别为a、b、c,向量q=(2a,1),p=(2b-c,cosC)且p平行于q
2个回答
展开全部
解答:
(1)∵向量p∥向量q
∴(2b-c)/(2a)=cosC,
∴2b-c=2acosC=(a^2+b^2-c^2)/b,
∴2b^2-bc=a^2+b^2-c^2,
∴b^2+c^2-a^2=bc,
∴cosA=(b^2+c^2-a^2)/(2bc)=1/2,
∴ sinA=√3/2.
(2)
A=60°
(-2cos2C)/(1+tanC) +1
=-2[(cosC)^2-(sinC)^2]/(1+sinC/cosC)+1
=-cosC(cosC+sinC)*(cosC-sinC)/(cosC+sinC)+1
=2cosC(sinC-cosC)+1
=2sinCcosC-2(cosC)^2+1
=sin2C-cos2C
=√2sin(2C-45°),
∵ 0<C<120°,
∴ -45°<2C-45°<175°
∴ sin(2c-45°)∈(-√2,1]
∴ 所求的取值范围是(-1,√2].
(1)∵向量p∥向量q
∴(2b-c)/(2a)=cosC,
∴2b-c=2acosC=(a^2+b^2-c^2)/b,
∴2b^2-bc=a^2+b^2-c^2,
∴b^2+c^2-a^2=bc,
∴cosA=(b^2+c^2-a^2)/(2bc)=1/2,
∴ sinA=√3/2.
(2)
A=60°
(-2cos2C)/(1+tanC) +1
=-2[(cosC)^2-(sinC)^2]/(1+sinC/cosC)+1
=-cosC(cosC+sinC)*(cosC-sinC)/(cosC+sinC)+1
=2cosC(sinC-cosC)+1
=2sinCcosC-2(cosC)^2+1
=sin2C-cos2C
=√2sin(2C-45°),
∵ 0<C<120°,
∴ -45°<2C-45°<175°
∴ sin(2c-45°)∈(-√2,1]
∴ 所求的取值范围是(-1,√2].
展开全部
(1)在三角形ABC中,角A、B、C所对的边分别为a、b、c,向量q=(2a,1),p=(2b-c,cosC)且p平行于q
2a*cosC=2b-c
余弦定理 cosC=(a^2+b^2-c^2)/2ab 代入,得
2a*[(a^2+b^2-c^2)/2ab]=2b-c
a^2+b^2-c^2=2b^2-bc
所以 b^2+c^2-a^2=bc
cosA=( b^2+c^2-a^2)/2bc=1/2
所以 A=π/3
sinA=√3/2
(2)三角函数式((-2cos2C)/(1+tanC))+1的取值范围
((-2cos2C)/(1+tanC))+1
=-2(cosC-sinC)(cosC+sinC)/[(cosC+sinC)/cosC]+1
=-2cosC(cosC-sinC)+1
=2sinCcosC-2cos^2C+1
=sin2C-cos2C
=√2sin(2C-π/4) A=π/3 0<C<2π/3
-π/4<2C-π/4<13π/12
-1<=sin(2C-π/4) <=1
((-2cos2C)/(1+tanC))+1的取值范围 [-√2,√2]
2a*cosC=2b-c
余弦定理 cosC=(a^2+b^2-c^2)/2ab 代入,得
2a*[(a^2+b^2-c^2)/2ab]=2b-c
a^2+b^2-c^2=2b^2-bc
所以 b^2+c^2-a^2=bc
cosA=( b^2+c^2-a^2)/2bc=1/2
所以 A=π/3
sinA=√3/2
(2)三角函数式((-2cos2C)/(1+tanC))+1的取值范围
((-2cos2C)/(1+tanC))+1
=-2(cosC-sinC)(cosC+sinC)/[(cosC+sinC)/cosC]+1
=-2cosC(cosC-sinC)+1
=2sinCcosC-2cos^2C+1
=sin2C-cos2C
=√2sin(2C-π/4) A=π/3 0<C<2π/3
-π/4<2C-π/4<13π/12
-1<=sin(2C-π/4) <=1
((-2cos2C)/(1+tanC))+1的取值范围 [-√2,√2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询