已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:
已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形。(2)若EF分别为...
已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形。(2)若EF分别为AB、CA延长线。完整题目如下
展开
1个回答
展开全部
(1)连DE,DF,AD,EF.因为三角形ABC是等腰直角三角形,所以AD=BD,角DAF=角DBE=45度,又BE=AF,所以三角形DAF全等于三角形DBE,从而 DE=DF, 角BDE=角ADF.这样角EDF=角EDA+角ADF=角EDA+角BDE=角BDA=90度,所以三角形DEF是等腰直角三角形。
(2)连DE,DF,AD,EF.仍然利用三角形ABC是等腰直角三角形,AD=BD,但此时E,F分别在AB,CA延长线上,所以角FAD=角EBD=135度,又AF=BE,所以三角形FAD全等于三角形EBD,因此DE=DF,角EBD=角FDA. 而角EDF=角EDB+角BDF=角ADF+角BDF=角ADB=90度,所以三角形DEF仍为等腰直角三角形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询