已知f(x)是定义在(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f(1-a)+f(1-

已知f(x)是定义在(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f(1-a)+f(1-a^2)<0,求实数a的取值范围要求详细过程和解释!... 已知f(x)是定义在(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f(1-a)+f(1-a^2)<0,求实数a的取值范围 要求详细过程和解释! 展开
 我来答
anranlethe
2013-11-15 · TA获得超过8.6万个赞
知道大有可为答主
回答量:1.7万
采纳率:80%
帮助的人:2.2亿
展开全部
简单来说,这类题就是两点论:定义域,单调性。
首先定义域要求:-1<1-a<1,得0<a<2;
-1<1-a^2<1,得0<a^2<2;
所以定义域要求:0<a<√2;
不等式f(1-a)+f(1-a²)<0即f(1-a)<-f(1-a²),
因为奇函数满足f(-x)=-f(x),所以-f(1-a²)=f(a²-1)
所以不等式f(1-a)<-f(1-a²)即f(1-a)<f(a²-1),
由单调递减性:1-a>a²-1,得a²+a-2<0,即:(a+2)(a-1)<0,得:-2<a<1;
结合定义域得:0<a<1
即不等式f(1-a)+f(1-a²)<0的解集为:0<a<1;

注:不分段是因为f(x)本身就不是一个分段函数,它在定义域(-1,1)上是连续的,它的单调性也是连续的。
当然关于单调性要注意:这边题目给出在[0,1)上递减,所以f(x)在定义域(-1,1)上递减;
如果给出是在(0,1)上递减,那就要分段讨论了,当然这种题是不会出的,因为很难,而且缺少其他条件,做不了;
不过你自己还是看一下这两个的区别,想想为啥第二种就不能说在定义域上递减,不懂再hi我。

希望能帮到你,如果不懂,请Hi我,祝学习进步!
百度网友881aa216
推荐于2017-12-16 · TA获得超过2625个赞
知道小有建树答主
回答量:1968
采纳率:42%
帮助的人:392万
展开全部
奇函数,f(-x)=-f(x)
在区间[0,1)上单调递减;那么在(-1,0]也为单调递减;
设x>0,-x<0
f(-x)>0>f(x)
所以在(-1,1)上函数都是递减的。

f(1-a)+f(1-a²)<0
f(1-a)<-f(1-a²)=f(a²-1)
即求:f(1-a)<f(a²-1)的解集
故:1-a>a²-1
-2<a<1

同时要满足定义域,即:
-1〈1-a〈1
-1〈1-a²〈1
即:0<a<2;
-√2<a<0或0<a<√2

综上:0<a<1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
时方仲孙晔
2019-02-26 · TA获得超过3753个赞
知道大有可为答主
回答量:3134
采纳率:30%
帮助的人:247万
展开全部
奇函数,f(-x)=-f(x)
在区间[0,1)上单调递减;那么在(-1,0]也为单调递减;
设x>0,-x0>f(x)
所以在(-1,1)上函数都是递减的.
f(1-a)+f(1-a²)<0
f(1-a)<-f(1-a²)=f(a²-1)
即求:f(1-a)<f(a²-1)的解集
故:1-a>a²-1
-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式