数列{an}各项均为正数,其前n项和为sn,且满足2ansn-an2=1,设bn=2/4sn4-1
1个回答
展开全部
2anSn-(an)2=1
n=1, a1=1
2[Sn-S(n-1)]Sn-[Sn-S(n-1)]^2=1
(Sn)^2-[S(n-1)]^2 =1
{(Sn)^2} 是等差数列, d=1
(Sn)^2-(S1)^2 = n-1
(Sn)^2 = n
bn=2/[4(Sn)^4-1]
= 2/(4n^2-1)
= 1/(2n-1) - 1/(2n+1)
Tn = b1+b2+...+bn
= 1 - 1/(2n+1)
= 2n/(2n+1)
n=1, a1=1
2[Sn-S(n-1)]Sn-[Sn-S(n-1)]^2=1
(Sn)^2-[S(n-1)]^2 =1
{(Sn)^2} 是等差数列, d=1
(Sn)^2-(S1)^2 = n-1
(Sn)^2 = n
bn=2/[4(Sn)^4-1]
= 2/(4n^2-1)
= 1/(2n-1) - 1/(2n+1)
Tn = b1+b2+...+bn
= 1 - 1/(2n+1)
= 2n/(2n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询