证明,当0<x<π时,有∑sin(2n+1)/(2n+1)=π/4
1个回答
2014-05-26 · 知道合伙人IT服务行家
关注
展开全部
参考例题:在(0,π)区间证明 sin(2n+1)x/sinx的积分=π,
答案:
和差化积公式
sin(2n+1)x=sinx-sinx+sin3x-sin3x+sin5x-sin5x+sin7x-sin7x+...+sin(2n-1)x-sin(2n-1)x+sin(2n+1)x
=sinx+cos2xsinx+cos4xsinx+cos6xsinx+....+cos2nxsinx
∫[0—〉π]{[sin(2n+1)x]/sinx}dx
=∫[0—〉π][1+cos2x+cos4x+cos6x+....+cos2nx]
=π
答案:
和差化积公式
sin(2n+1)x=sinx-sinx+sin3x-sin3x+sin5x-sin5x+sin7x-sin7x+...+sin(2n-1)x-sin(2n-1)x+sin(2n+1)x
=sinx+cos2xsinx+cos4xsinx+cos6xsinx+....+cos2nxsinx
∫[0—〉π]{[sin(2n+1)x]/sinx}dx
=∫[0—〉π][1+cos2x+cos4x+cos6x+....+cos2nx]
=π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询