45页 1、在等比数列{an}中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于
1个回答
展开全部
只有当q不为1时,才有s(n) = a(1)[1-q^n]/(1-q).
q=1时,s(n) = na(1).
就这道题来说,
a(n) = 2q^(n-1).
{a(n)+1}是等比数列,因此,
[a(2)+1]^2 = [a(1)+1][a(3)+1] = [2+1][2q^2 + 1] = [2q+1]^2,
6q^2 + 3 = 4q^2 + 4q + 1,
0 = 2q^2 - 4q + 2 = 2(q^2 - 2q + 1) = 2(q-1)^2.
恰恰 q=1.
所以,a(n) = 2, s(n) = 2n.
答案:A,2n
q=1时,s(n) = na(1).
就这道题来说,
a(n) = 2q^(n-1).
{a(n)+1}是等比数列,因此,
[a(2)+1]^2 = [a(1)+1][a(3)+1] = [2+1][2q^2 + 1] = [2q+1]^2,
6q^2 + 3 = 4q^2 + 4q + 1,
0 = 2q^2 - 4q + 2 = 2(q^2 - 2q + 1) = 2(q-1)^2.
恰恰 q=1.
所以,a(n) = 2, s(n) = 2n.
答案:A,2n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询