求助一道有关偏导数微分方程的题~求高手解答
1个回答
展开全部
zx=f'(e^xcosy)*e^xcosy
zxx=f''(e^xcosy)(e^xcosy)^2+f'(e^xcosy)*e^xcosy
zy=f'(e^xcosy)*e^x(-siny)
zyy=f''(e^xcosy)*[e^x(-siny)]^2+f'(e^xcosy)*e^x(-cosy)
zxx+zyy=f''(e^xcosy)(e^xcosy)^2+f'(e^xcosy)*e^xcosy+f''(e^xcosy)*[e^x(siny)]^2-f'(e^xcosy)*e^xcosy
=f''(e^xcosy)e^(2x)
=4[f(e^xcosy)+e^xcosy]e^(2x)
f''(u)=4f(u)+4u
f''-4f=4u
齐次解:r^2-4=0
r=-2,2
f=Ae^(2u)+Be^(-2u)
非齐次解:f=-u 因为右端是一次函数
f=Ae^(2u)+Be^(-2u)-u
u=0,f=A+B=0
f'=2Ae^(2u)-2Be^(-2u)-1
u=0,f'=2A-2B-1=0
A=1/4,B=-1/4
所以
f(u)=(1/4)e^(2u)-(1/4)e^(-2u)-u
zxx=f''(e^xcosy)(e^xcosy)^2+f'(e^xcosy)*e^xcosy
zy=f'(e^xcosy)*e^x(-siny)
zyy=f''(e^xcosy)*[e^x(-siny)]^2+f'(e^xcosy)*e^x(-cosy)
zxx+zyy=f''(e^xcosy)(e^xcosy)^2+f'(e^xcosy)*e^xcosy+f''(e^xcosy)*[e^x(siny)]^2-f'(e^xcosy)*e^xcosy
=f''(e^xcosy)e^(2x)
=4[f(e^xcosy)+e^xcosy]e^(2x)
f''(u)=4f(u)+4u
f''-4f=4u
齐次解:r^2-4=0
r=-2,2
f=Ae^(2u)+Be^(-2u)
非齐次解:f=-u 因为右端是一次函数
f=Ae^(2u)+Be^(-2u)-u
u=0,f=A+B=0
f'=2Ae^(2u)-2Be^(-2u)-1
u=0,f'=2A-2B-1=0
A=1/4,B=-1/4
所以
f(u)=(1/4)e^(2u)-(1/4)e^(-2u)-u
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询