求助一道有关偏导数微分方程的题~求高手解答

chinasunsunsun
推荐于2016-09-21 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5494
采纳率:75%
帮助的人:3616万
展开全部
zx=f'(e^xcosy)*e^xcosy
zxx=f''(e^xcosy)(e^xcosy)^2+f'(e^xcosy)*e^xcosy
zy=f'(e^xcosy)*e^x(-siny)
zyy=f''(e^xcosy)*[e^x(-siny)]^2+f'(e^xcosy)*e^x(-cosy)
zxx+zyy=f''(e^xcosy)(e^xcosy)^2+f'(e^xcosy)*e^xcosy+f''(e^xcosy)*[e^x(siny)]^2-f'(e^xcosy)*e^xcosy
=f''(e^xcosy)e^(2x)
=4[f(e^xcosy)+e^xcosy]e^(2x)
f''(u)=4f(u)+4u
f''-4f=4u
齐次解:r^2-4=0
r=-2,2
f=Ae^(2u)+Be^(-2u)
非齐次解:f=-u 因为右端是一次函数
f=Ae^(2u)+Be^(-2u)-u
u=0,f=A+B=0
f'=2Ae^(2u)-2Be^(-2u)-1
u=0,f'=2A-2B-1=0
A=1/4,B=-1/4
所以
f(u)=(1/4)e^(2u)-(1/4)e^(-2u)-u
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式