(2011?营口)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证
(2011?营口)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆.ACB的三...
(2011?营口)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆.ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.
展开
1个回答
展开全部
(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,
∴PB⊥AB.
∴∠OPB+∠POB=90°.(1分)
∵OP⊥BC,
∴∠ABC+∠POB=90°.
∴∠ABC=∠OPB.(2分)
又∠AEC=∠ABC,
∴∠OPB=∠AEC.(3分)
(2)解:四边形AOEC是菱形.
证法一:∵OP⊥弦BC于点D且交⊙O于点E,
∴
=
.(4分)
∵C为半圆
的三等分点,
∴
=
=
.
∴∠ABC=∠ECB.(5分)
∴AB∥CE.(6分)
∵AB是⊙O的直径,
∴AC⊥BC.(7分)
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.(8分)
∴四边形AOEC是平行四边形.(9分)
又 OA=OE,
∴四边形AOEC是菱形.(10分)
证法二:连接OC.
∵C为半圆
的三等分点,
∴∠AOC=60°.
∴∠ABC=∠AEC=∠OPB=30°.
由(1),得∠POB=90°-∠OPB=60°.
∴∠ECB=30°.
∴∠ABC=∠ECB=30°.
∴AB∥CE.
∵AB是⊙O的直径,
∴AC⊥BC.
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.
∴四边形AOEC是平行四边形.
又 OA=OE,
∴四边形AOEC是菱形.
证法三:连接OC,则OC=OA=OE.
∵C为半圆
的三等分点,
∴∠AOC=60°.
∴△AOC为等边三角形.
∴AC=AO.
∵OP⊥弦BC于点D且交⊙O于点E,
∴
=
.
∵C为半圆
的三等分点,
∴
=
=
.
∴AC=CE.
∴AC=CE=OA=OE.
∴四边形AOEC是菱形.
∴PB⊥AB.
∴∠OPB+∠POB=90°.(1分)
∵OP⊥BC,
∴∠ABC+∠POB=90°.
∴∠ABC=∠OPB.(2分)
又∠AEC=∠ABC,
∴∠OPB=∠AEC.(3分)
(2)解:四边形AOEC是菱形.
证法一:∵OP⊥弦BC于点D且交⊙O于点E,
∴
. |
CE |
. |
BE |
∵C为半圆
. |
ACB |
∴
. |
AC |
. |
CE |
. |
BE |
∴∠ABC=∠ECB.(5分)
∴AB∥CE.(6分)
∵AB是⊙O的直径,
∴AC⊥BC.(7分)
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.(8分)
∴四边形AOEC是平行四边形.(9分)
又 OA=OE,
∴四边形AOEC是菱形.(10分)
证法二:连接OC.
∵C为半圆
. |
ACB |
∴∠AOC=60°.
∴∠ABC=∠AEC=∠OPB=30°.
由(1),得∠POB=90°-∠OPB=60°.
∴∠ECB=30°.
∴∠ABC=∠ECB=30°.
∴AB∥CE.
∵AB是⊙O的直径,
∴AC⊥BC.
又 OP⊥弦BC于点D且交⊙O于点E,
∴AC∥OE.
∴四边形AOEC是平行四边形.
又 OA=OE,
∴四边形AOEC是菱形.
证法三:连接OC,则OC=OA=OE.
∵C为半圆
. |
ACB |
∴∠AOC=60°.
∴△AOC为等边三角形.
∴AC=AO.
∵OP⊥弦BC于点D且交⊙O于点E,
∴
. |
CE |
. |
BE |
∵C为半圆
. |
ACB |
∴
. |
AC |
. |
CE |
. |
BE |
∴AC=CE.
∴AC=CE=OA=OE.
∴四边形AOEC是菱形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询