已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的

已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;(2)若f(x)在R上单调,求a的取值... 已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;(2)若f(x)在R上单调,求a的取值范围;(3)当a=?52时,求函数f(x)的极小值. 展开
 我来答
龙大爷100236
推荐于2016-08-12 · 超过70用户采纳过TA的回答
知道答主
回答量:145
采纳率:75%
帮助的人:68.1万
展开全部
f'(x)=ex[x2+(a+2)x+a+2],
(1)当a=0时,f(x)=(x2+2)ex,f'(x)=ex(x2+2x+2),
f(1)=3e,f'(1)=5e,
∴函数f(x)的图象在点A(1,f(1))处的切线方程为y-3e=5e(x-1),
即5ex-y-2e=0
(2)f'(x)=ex[x2+(a+2)x+a+2],,
考虑到ex>0恒成立且x2系数为正,
∴f(x)在R上单调等价x2+(a+2)x+a+2≥0恒成立.
∴(a+2)2-4(a+2)≤0,
∴-2≤a≤2,即a的取值范围是[-2,2],
(3)当a=-
5
2
时,f(x)=(x2-
5
2
x+2)ex,f'(x)=ex(x2-
1
2
x-
1
2
),
令f'(x)=0,得x=-
1
2
,或x=1,
令f'(x)>0,得x<-
1
2
,或x>1,
令f'(x)<0,得-
1
2
<x<1????????????????????
x,f'(x),f(x)的变化情况如下表
X (-∞,-
1
2
-
1
2
(-
1
2
,1)
1 (1,+∞)
f'(x) + 0 - 0 +
f(x) 极大值 极小值
所以函数f(x)的极小值为f(1)=
1
2
e
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式