设三阶矩阵A的特征值为1,2,-3,求|A*+3A+2E| 求解
2个回答
展开全部
A*=|5261A|A逆
A*α4102=|A|A逆α
Aα=λα
A逆Aα=λA逆α
α=λA逆α
(|A|/λ)α=A*α
故A*的特1653征值为|A|/λ
|A|=1*2*(-3)=-6
所以A*的特征值为-6/1,-6/2,-6/3,即-6,-3,2
A*—3A+2E的特征值为
-6-3+2=-7
-3-6+2=-7
2+9+2=13
所以|A*—3A+2E|=-7*-7*13=637
扩展资料
三阶矩阵性质
性质1:行列式与它的转置行列式相等。
性质2:互换行列式的两行(列),行列式变号。
性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询