已知函数f(x)=-x3+ax2+b(a、b∈R).(1)若a>0,求函数f(x)的单调区间;(2)若a=1,函数f(x)的
已知函数f(x)=-x3+ax2+b(a、b∈R).(1)若a>0,求函数f(x)的单调区间;(2)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由;(3)...
已知函数f(x)=-x3+ax2+b(a、b∈R).(1)若a>0,求函数f(x)的单调区间;(2)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由;(3)若函数f(x)在[0,2]上是增函数,x=2是方程f(x)=0的一个根,求证:f(1)≤-2.
展开
1个回答
展开全部
∵f(x)=-x3+ax2+b(a、b∈R)
∴f'(x)=-3x2+2ax=-x(3x-2a).
(1)若a>0,令f'(x)=0得x1=0,x2=
,则
>0
∴f(x)的单调增区间为:(0,
),单调递减区间为:(-∞,0),(
,+∞)
(2)若a=1,由(1)可得f(x)在(0,
)上单调递增,
则x∈(0,
)时,f(x)>f(0)=b
∴f(x)的图象不可能总在直线y=b的下方.
(3)若函数f(x)在[0,2]上是增函数,则x∈[0,2]时f'(x)=-3x2+2ax≥0恒成立.
即a≥
=
x对x∈[0,2]恒成立,
∴a≥3.
又f(2)=0,
∴-8+4a=b+0得b=8-4a,
∴f(1)=-1+a+b=7-3a≤-2.
∴f'(x)=-3x2+2ax=-x(3x-2a).
(1)若a>0,令f'(x)=0得x1=0,x2=
2a |
3 |
2a |
3 |
∴f(x)的单调增区间为:(0,
2a |
3 |
2a |
3 |
(2)若a=1,由(1)可得f(x)在(0,
2 |
3 |
则x∈(0,
2 |
3 |
∴f(x)的图象不可能总在直线y=b的下方.
(3)若函数f(x)在[0,2]上是增函数,则x∈[0,2]时f'(x)=-3x2+2ax≥0恒成立.
即a≥
3x2 |
2x |
3 |
2 |
∴a≥3.
又f(2)=0,
∴-8+4a=b+0得b=8-4a,
∴f(1)=-1+a+b=7-3a≤-2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询