已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*)(1)求证:{an+2}是等比数列(2)求数列{an}的通项a
已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*)(1)求证:{an+2}是等比数列(2)求数列{an}的通项an(3)若数列{bn}的满足bn=log...
已知数列{an}的前n项和Sn,满足:Sn=2an-2n(n∈N*)(1)求证:{an+2}是等比数列(2)求数列{an}的通项an(3)若数列{bn}的满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求证12≤Tn≤32.
展开
1个回答
展开全部
(1)证明:当n∈N*时,Sn=2an-2n,
则当n≥2时,Sn-1=2an-1-2(n-1)
两式相减得an=2an-2an-1-2,
即an=2an-1+2,(3分)
∴an+2=2(an-1+2),
∴
=2,(4分)
当n=1时,S1=2a1-2,则a1=2,
∴{an+2}是以a1+2=4为首项,2为公比的等比数列.(7分)
(2)解:∵{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4×2n?1,
∴an=2n+1?2.(7分)
(3)证明:bn=log2(an+2)=log22n+1=n+1,
∴
=
,(8分)
则Tn=
+
+…+
,①
Tn=
+
+…+
+
,②
①-②,得:
Tn=
+
+
+…+
-
=
+
则当n≥2时,Sn-1=2an-1-2(n-1)
两式相减得an=2an-2an-1-2,
即an=2an-1+2,(3分)
∴an+2=2(an-1+2),
∴
an+2 |
an?1+2 |
当n=1时,S1=2a1-2,则a1=2,
∴{an+2}是以a1+2=4为首项,2为公比的等比数列.(7分)
(2)解:∵{an+2}是以a1+2=4为首项,2为公比的等比数列,
∴an+2=4×2n?1,
∴an=2n+1?2.(7分)
(3)证明:bn=log2(an+2)=log22n+1=n+1,
∴
bn |
an+2 |
n+1 |
2n+1 |
则Tn=
2 |
22 |
3 |
23 |
n+1 |
2n+1 |
1 |
2 |
2 |
23 |
3 |
24 |
n |
2n+1 |
n+1 |
2n+2 |
①-②,得:
1 |
2 |
2 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
n+1 |
2n+2 |
=
1 |
2 |