(2012?广东)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE

(2012?广东)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA... (2012?广东)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B-PC-A的正切值. 展开
 我来答
安生lvZE
推荐于2017-09-13 · TA获得超过179个赞
知道答主
回答量:116
采纳率:100%
帮助的人:48.4万
展开全部
(1)∵PA⊥平面ABCD
∴PA⊥BD
∵PC⊥平面BDE
∴PC⊥BD,又PA∩PC=P
∴BD⊥平面PAC
(2)设AC与BD交点为O,连OE
∵PC⊥平面BDE
∴PC⊥平面BOE
∴PC⊥BE
∴∠BEO为二面角B-PC-A的平面角
∵BD⊥平面PAC
∴BD⊥AC
∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2
2
,PC=3
∴OC=BO=
2

在△PAC∽△OEC中,
OE
OC
PA
PC
?
OE
2
1
3
?OE=
2
3

又BD⊥OE,
tan∠BEO=
BO
OE
=3

∴二面角B-PC-A的平面角的正切值为3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式