已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( ) A.f(-
已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(...
已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( ) A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25) C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)
展开
1个回答
展开全部
∵f(x)满足f(x-4)=-f(x), ∴f(x-8)=f(x), ∴函数是以8为周期的周期函数, 则f(-25)=f(-1),f(80)=f(0),f(11)=f(3), 又∵f(x)在R上是奇函数,f(0)=0, 得f(80)=f(0)=0,f(-25)=f(-1), 而由f(x-4)=-f(x) 得f(11)=f(3)=-f(-1)=f(1), 又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数 ∴f(x)在区间[-2,2]上是增函数 ∴f(1)>f(0)>f(-1), 即f(-25)<f(80)<f(11), 故选D |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询