如图1,△ABC为等边三角形,D为B上任一点,∠ADE=60°,边DE与∠ACB外角的平分线相交于点E.(1)求证:A

如图1,△ABC为等边三角形,D为B上任一点,∠ADE=60°,边DE与∠ACB外角的平分线相交于点E.(1)求证:AD=DE;(2)若点D在CB的延长线上,如图2,(1... 如图1,△ABC为等边三角形,D为B上任一点,∠ADE=60°,边DE与∠ACB外角的平分线相交于点E.(1)求证:AD=DE;(2)若点D在CB的延长线上,如图2,(1)中的结论是否仍然成立?若成立请给予证明;若不成立请说明理由. 展开
 我来答
杞彦芝p5
2014-10-27 · TA获得超过102个赞
知道答主
回答量:131
采纳率:0%
帮助的人:130万
展开全部
(1)证明:如图,在AB上取一点M,使BM=BD,连接MD.
∵△ABC是等边三角形,
∴∠B=60°,BA=BC.
∴△BMD是等边三角形,∠BMD=60°.∠AMD=120°.
∵CE是外角∠ACF的平分线,
∴∠ECF=60°,∠DCE=120°.
∴∠AMD=∠DCE.
∵∠ADE=∠B=60°,∠ADC=∠CDE+∠ADE=∠MAD+∠B,
∴∠CDE=∠MAD.
又∵BA-BM=BC-BD,即MA=CD.
在△AMD和△DCE中,
∠MAD=∠CDE
MA=CD
∠AMD=∠DCE

∴△AMD≌△DCE(ASA),
∴AD=DE.

(2)答:正确.
证明:延长CA到M,使AM=BD,与(1)相同,可证△CDM是等边三角形,
∴∠CDM=∠M=60°,CD=DM,
∵∠ADE=60°,
∴∠ADM=∠EDC,
在△AMD和△DCE中,
∠ADM=∠EDC
DM=DC
∠M=∠ECD=60°

∴△AMD≌△ECD(ASA),
∴AD=DE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式