(2009?株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>
(2009?株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)...
(2009?株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
展开
1个回答
展开全部
(1)解:由B(3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形,
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).
(2)解:∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2,
得:
解得
∴抛物线的解析式为y=x2-2x+1;
(3)证明:过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM∥CE
∴△PQM∽△PEC
∴
=
即
=
,得EC=2(x-1)
∵QN∥FC
∴△BQN∽△BFC
∴
=
即
=
,得FC=
又∵AC=4
∴FC(AC+EC)=
[4+2(x-1)]=
(2x+2)=
×2×(x+1)=8
即FC(AC+EC)为定值8.
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).
(2)解:∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2,
得:
|
解得
|
∴抛物线的解析式为y=x2-2x+1;
(3)证明:过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM∥CE
∴△PQM∽△PEC
∴
QM |
EC |
PM |
PC |
即
(x?1)2 |
EC |
x?1 |
2 |
∵QN∥FC
∴△BQN∽△BFC
∴
QN |
FC |
BN |
BC |
即
3?x |
FC |
4?(x?1)2 |
4 |
4 |
x+1 |
又∵AC=4
∴FC(AC+EC)=
4 |
x+1 |
4 |
x+1 |
4 |
x+1 |
即FC(AC+EC)为定值8.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询