已知f(x)=alnx+x2(1)讨论f(x)的单调性,(2)当a>0时,若对于任意x1,x2∈(0,+∞),都有|f(x1

已知f(x)=alnx+x2(1)讨论f(x)的单调性,(2)当a>0时,若对于任意x1,x2∈(0,+∞),都有|f(x1)-f(x2)|≥3|x1-x2|,求a的取值... 已知f(x)=alnx+x2(1)讨论f(x)的单调性,(2)当a>0时,若对于任意x1,x2∈(0,+∞),都有|f(x1)-f(x2)|≥3|x1-x2|,求a的取值范围. 展开
 我来答
百度网友ccff4808c84
2014-10-27 · 超过71用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:171万
展开全部
(1)f(x)=
a
x
+2x=
a+2x2
x

当a≥0时,f′(x)≥0恒成立,此时f(x)在(0,+∞)上单调递增;
当a<0时,令f′(x)>0得:x>
?
a
2
,f′(x)<0得:0<x<
?
a
2

此时f(x)的递增区间为(
?
a
2
,+∞)
),f(x)的递减区间为(0,
?
a
2
)

(2)由(1)知a>0时f(x)在(0,+∞)上单调递增,
不妨设x1<x2,则|f(x1)-f(x2)|≥3|x1-x2|可化为f(x2)-f(x1)≥3x2-3x1,即f(x2)-3x2≥f(x1)-3x1
令g(x)=f(x)-3x,则g(x)在(0,+∞)上单调递增,
g′(x)=f′(x)-3=
a+2x2
x
?3=
a+2x2?3x
x
≥0
对x∈(0,+∞)恒成立,
∴a≥-2x2+3x=-2(x?
3
4
)2+
9
8

a≥
9
8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式