已知函数f(x)=alnx-ax-3(a∈R,a≠0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:ln22×ln33×ln44
已知函数f(x)=alnx-ax-3(a∈R,a≠0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:ln22×ln33×ln44×…lnnn<1n(n≥2,n∈N*)....
已知函数f(x)=alnx-ax-3(a∈R,a≠0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:ln22×ln33×ln44×…lnnn<1n(n≥2,n∈N*).
展开
展开全部
(Ⅰ)由于f′(x)=
(x>0),…(2分)
①当a>0时,易知,当0<x<1时,f'(x)>0,当x>1时,f'(x)<0;
所以f(x)的单调递增区间为(0,1),递减区间为(1,+∞);…(4分)
②当a<0时,同理可知f(x)的单调递减区间为(0,1),递增区间为(1,+∞);…(6分)
(Ⅱ)要证
×
×
×…
<
(n≥2,n∈N*)成立;
只须证
<
(n≥2,n∈N*,)
即证lnn<n-1(n≥2,n∈N*,)
下面证明此式.
证明:令a=1此时f(x)=lnx-x-3,所以f(1)=-4,
由(I)知f(x)=lnx-x-3在(1,+∞)上单调递减,
∴当x∈[1,+∞)时f(x)<f(1),即lnx-x+1<0,
∴lnx<x-1对一切x∈(1,+∞)成立,(12分)
∵n≥2,n∈N*,则有0<lnn<n-1,
故结论成立.
a(1?x) |
x |
①当a>0时,易知,当0<x<1时,f'(x)>0,当x>1时,f'(x)<0;
所以f(x)的单调递增区间为(0,1),递减区间为(1,+∞);…(4分)
②当a<0时,同理可知f(x)的单调递减区间为(0,1),递增区间为(1,+∞);…(6分)
(Ⅱ)要证
ln2 |
2 |
ln3 |
3 |
ln4 |
4 |
lnn |
n |
1 |
n |
只须证
lnn |
n |
n?1 |
n |
即证lnn<n-1(n≥2,n∈N*,)
下面证明此式.
证明:令a=1此时f(x)=lnx-x-3,所以f(1)=-4,
由(I)知f(x)=lnx-x-3在(1,+∞)上单调递减,
∴当x∈[1,+∞)时f(x)<f(1),即lnx-x+1<0,
∴lnx<x-1对一切x∈(1,+∞)成立,(12分)
∵n≥2,n∈N*,则有0<lnn<n-1,
故结论成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询