在三角形ABC中,2sin2C?cosC-sin3C=3(1-cosC).(1)求角C的大小;(2)若AB=2,且sinC+sin(B-A)=2si
在三角形ABC中,2sin2C?cosC-sin3C=3(1-cosC).(1)求角C的大小;(2)若AB=2,且sinC+sin(B-A)=2sin2A,求△ABC的面...
在三角形ABC中,2sin2C?cosC-sin3C=3(1-cosC).(1)求角C的大小;(2)若AB=2,且sinC+sin(B-A)=2sin2A,求△ABC的面积.
展开
1个回答
展开全部
∵2sin2C?cosC-sin3C=
(1-cosC).
∴2sin2C?cosC-sin(2C+C)
=2sin2C?cosC-sin2CcosC-cos2CsinC
=sin2CcosC-cos2CsinC
=sinC
=
(1-cosC).
∴sinC=
-
cosC.
∴sin(C+
)=
.
∵C是三角形的内角,∴C+
=
,
∴C=
.
(2)由sinC+sin(B-A)=2sin2A可得sin(A+B)+sin(B-A)=2sin2A,
可得sinBcosA=2sinAcosA,sinB=2sinA或cosA=0,
当cosA=0,∴A=
,b=
∴S△ABC=
AB?AC=
×2×
=
.
当sinB=2sinA,由正弦定理可知,b=2a,由余弦定理可知:cosC=
=
,
∴a=
,
S△ABC=
absinC=
.
3 |
∴2sin2C?cosC-sin(2C+C)
=2sin2C?cosC-sin2CcosC-cos2CsinC
=sin2CcosC-cos2CsinC
=sinC
=
3 |
∴sinC=
3 |
3 |
∴sin(C+
π |
3 |
| ||
2 |
∵C是三角形的内角,∴C+
π |
3 |
2π |
3 |
∴C=
π |
3 |
(2)由sinC+sin(B-A)=2sin2A可得sin(A+B)+sin(B-A)=2sin2A,
可得sinBcosA=2sinAcosA,sinB=2sinA或cosA=0,
当cosA=0,∴A=
π |
2 |
2 | ||
|
∴S△ABC=
1 |
2 |
1 |
2 |
2 | ||
|
2
| ||
3 |
当sinB=2sinA,由正弦定理可知,b=2a,由余弦定理可知:cosC=
a2+b2?c2 |
2ab |
1 |
2 |
∴a=
2 | ||
|
S△ABC=
1 |
2 |
2
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询